Skip to main content

Gas Bubble Shape Measurement and Analysis

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Included in the following conference series:

Abstract

This work focuses on the precise quantification of bubble streams from underwater gas seeps. The performance of the snake based method and of ellipse fitting with the CMA-ES non-linear optimization algorithm is evaluated. A novel improved snake based method is presented and the optimal choice of snake parameters is studied. A Kalman filter is used for bubble tracking. The deviation between the measured flux and a calibrated flux meter is 4 % for small and 9 % for larger bubbles. This work will allow a better data gathering on marine gas seeps for future climatology and marine research.

Recommended for submission to YRF2014 by Prof. Dr.-Ing. Reinhard Koch, Kiel University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(6), 679–698 (1986)

    Article  Google Scholar 

  2. Cheng, D.c., Burkhardt, H.: Bubble recognition from image sequences. In: Proceedings of Eurotherm Seminar 68: Inverse Problems and Experimental Design in Thermal and Mechanical Engineering (2001)

    Google Scholar 

  3. Goulermas, J.Y., Liatsis, P.: Novel combinatorial probabilistic hough transform technique for detection of underwater bubbles. In: Machine Vision Applications in Industrial Inspection V, vol. 3029, pp. 147–156 (1997)

    Google Scholar 

  4. Greinert, J., Artemov, Y., Egorov, V., Debatist, M., Mcginnis, D.: 1300-m-high rising bubbles from mud volcanoes at 2080m in the black sea: hydroacoustic characteristics and temporal variability. Earth Planet. Sci. Lett. 244(1–2), 1–15 (2006)

    Article  Google Scholar 

  5. Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Ishimatsu, A., Kikkawa, T., Hayashi, M., Lee, K.S., Kita, J.: Effects of CO2 on marine fish: larvae and adults. J. Oceanogr. 60(4), 731–741 (2004)

    Article  Google Scholar 

  7. Kalman, R.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(D), 35–45 (1960)

    Article  Google Scholar 

  8. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  9. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1–2), 83–97 (1955)

    Article  Google Scholar 

  10. Leifer, I., De Leeuw, G.: Optical measurement of bubbles: system design and application. J. Atmos. Oceanic Technol. 20(9), 1317–1332 (2003)

    Article  Google Scholar 

  11. Leifer, I., de Leeuw, G., Kunz, G., Cohen, L.: Calibrating optical bubble size by the displaced-mass method. Chem. Eng. Sci. 58(23–24), 5211–5216 (2003)

    Article  Google Scholar 

  12. Lelieveld, J., Crutzen, P.J., Dentener, F.J.: Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B 50(2), 128–150 (1998)

    Article  Google Scholar 

  13. McGinnis, D.F., Greinert, J., Artemov, Y., Beaubien, S.E., West, A.: Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J. Geophys. Res. 111(C9), C09007 (2006). doi:10.1029/2005JC003183

  14. Thomanek, K., Zielinski, O., Sahling, H., Bohrmann, G.: Automated gas bubble imaging at sea floor; a new method of in situ gas flux quantification. Ocean Sci. 6(2), 549–562 (2010)

    Article  Google Scholar 

  15. Wang, H., Dong, F.: Image features extraction of gas/liquid two-phase flow in horizontal pipeline by GLCM and GLGCM. In: Proceedins of 2009 9th International Conference on Electronic Measurement & Instruments (ICEMI’ 09), pp. 2-135–2-139. IEEE, August 2009

    Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Kiel and GEOMAR Helmholtz Centre for Ocean Research Kiel. I am also grateful for support from Prof. Dr.-Ing. Reinhard Koch and Dr. Anne Jordt for my work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudius Zelenka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zelenka, C. (2014). Gas Bubble Shape Measurement and Analysis. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics