Skip to main content

Link Prediction on the Semantic MEDLINE Network

An Approach to Literature-Based Discovery

  • Conference paper
Discovery Science (DS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8777))

Included in the following conference series:

Abstract

Retrieving and linking different segments of scientific information into understandable and interpretable knowledge is a challenging task. Literature-based discovery (LBD) is a methodology for automatically generating hypotheses for scientific research by uncovering hidden, previously unknown relationships from existing knowledge (published literature). Semantic MEDLINE is a database consisting of semantic predications extracted from MEDLINE citations. The predications provide a normalized form of the meaning of the text. The associations between the concepts in these predications can be described in terms of a network, consisting of nodes and directed arcs, where the nodes represent biomedical concepts and the arcs represent their semantic relationships. In this paper we propose and evaluate a methodology for link prediction of implicit relationships in the Semantic MEDLINE network. Link prediction was performed using different similarity measures including common neighbors, Jaccard index, and preferential attachment. The proposed approach is complementary to, and may augment, existing LBD approaches. The analyzed network consisted of 231,589 nodes and 10,061,747 directed arcs. The results showed high prediction performance, with the common neighbors method providing the best area under the ROC curve of 0.96.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rebholz-Schuhmann, D., Oellrich, A., Hoehndorf, R.: Text-mining solutions for biomedical research: Enabling integrative biology. Nat. Rev. Genet. 13, 829–839 (2012)

    Article  Google Scholar 

  2. Swanson, D.R.: Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspect. Biol. Med. 30, 7–18 (1986)

    Google Scholar 

  3. Hristovski, D., Rindflesch, T., Peterlin, B.: Using literature-based discovery to identify novel therapeutic approaches. Cardiovasc. Hematol. Agents Med. Chem. 11, 14–24 (2013)

    Article  Google Scholar 

  4. Rindflesch, T., Kilicoglu, H.: Semantic MEDLINE: An advanced information management application for biomedicine. Inf. Serv. Use. 31, 15–21 (2011)

    Google Scholar 

  5. Rindflesch, T.C., Fiszman, M.: The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. J. Biomed. Inform. 36, 462–477 (2003)

    Article  Google Scholar 

  6. Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32, D267–D270 (2004)

    Google Scholar 

  7. McCray, A.T., Srinivasan, S., Browne, A.C.: Lexical methods for managing variation in biomedical terminologies. In: Ozbolt, J.G. (ed.) Proceedings of the Eighteenth Annual Symposium on Computer Application in Medical Care, pp. 235–239. Hanley & Belfus, Washington, DC (1994)

    Google Scholar 

  8. Smith, L., Rindflesch, T., Wilbur, W.J.: MedPost: a part-of-speech tagger for bioMedical text. Bioinformatics 20, 2320–2321 (2004)

    Article  Google Scholar 

  9. Aronson, A.R., Lang, F.-M.: An overview of MetaMap: historical perspective and recent advances. J. Am. Med. Inform. Assoc. 17, 229–236 (2010)

    Google Scholar 

  10. Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., Rindflesch, T.C.: SemMedDB: a PubMed-scale repository of biomedical semantic predications. Bioinformatics 28, 3158–3160 (2012)

    Article  Google Scholar 

  11. Bales, M.E., Johnson, S.B.: Graph theoretic modeling of large-scale semantic networks. J. Biomed. Inform. 39, 451–454 (2006)

    Article  Google Scholar 

  12. Lü, L., Zhou, T.: Link prediction in complex networks: A survey. Phys. A Stat. Mech. its Appl. 390, 1150–1170 (2011)

    Article  Google Scholar 

  13. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. Soc. Ind. Appl. Math. 45, 167–256 (2003)

    MATH  Google Scholar 

  14. Manning, C.D., Schuetze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  15. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58, 1019–1031 (2007)

    Article  Google Scholar 

  16. Sarkar, P., Chakrabarti, D., Moore, A.W.: Theoretical justification of popular link prediction heuristics, pp. 2722–2727 (2011)

    Google Scholar 

  17. Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Katukuri, J.R., Xie, Y., Raghavan, V.V., Gupta, A.: Hypotheses generation as supervised link discovery with automated class labeling on large-scale biomedical concept networks. BMC Genomics 13(suppl. 3), S5 (2012)

    Google Scholar 

  19. Liu, Z., He, J.-L., Kapoor, K., Srivastava, J.: Correlations between community structure and link formation in complex networks. PLoS One 8, e72908 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kastrin, A., Rindflesch, T.C., Hristovski, D. (2014). Link Prediction on the Semantic MEDLINE Network. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds) Discovery Science. DS 2014. Lecture Notes in Computer Science(), vol 8777. Springer, Cham. https://doi.org/10.1007/978-3-319-11812-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11812-3_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11811-6

  • Online ISBN: 978-3-319-11812-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics