Skip to main content

Failure Prediction – An Application in the Railway Industry

  • Conference paper
Discovery Science (DS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8777))

Included in the following conference series:

Abstract

Machine or system failures have high impact both at technical and economic levels. Most modern equipment has logging systems that allow us to collect a diversity of data regarding their operation and health. Using data mining models for novelty detection enables us to explore those datasets, building classification systems that can detect and issue an alert when a failure starts evolving, avoiding the unknown development up to breakdown. In the present case we use a failure detection system to predict train doors breakdowns before they happen using data from their logging system. We study three methods for failure detection: outlier detection, novelty detection and a supervised SVM. Given the problem’s features, namely the possibility of a passenger interrupting the movement of a door, the three predictors are prone to false alarms. The main contribution of this work is the use of a low-pass filter to process the output of the predictors leading to a strong reduction in the false alarm rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, C.C.: Outlier Analysis. Springer (2013)

    Google Scholar 

  2. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In: Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007). Springer (2007)

    Google Scholar 

  3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41(3) (2009)

    Google Scholar 

  4. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)

    Google Scholar 

  5. Hempstalk, K., Frank, E., Witten, I.H.: One-class classification by combining density and class probability estimation. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 505–519. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Japkowicz, N., Myers, C., Gluck, M.A.: A novelty detection approach to classification. In: IJCAI, pp. 518–523. Morgan Kaufmann (1995)

    Google Scholar 

  7. Katipamula, S., Michael, P., Brambley, R.: Methods for fault detection, diagnostics, and prognostics for building systems–a review, part i (2004)

    Google Scholar 

  8. Nowlan, F.S., Heap, H.F.: Reliability-centered Maintenance. Dolby Access Press (1978)

    Google Scholar 

  9. Petsche, T., Marcantonio, A., Darken, C., Hanson, S.J., Kuhn, G.M., Santoso, I.: A neural network autoassociator for induction motor failure prediction, pp. 924–930. MIT Press (1996)

    Google Scholar 

  10. Rabatel, J., Bringay, S., Poncelet, P.: SO_MAD: SensOr mining for anomaly detection in railway data. In: Perner, P. (ed.) ICDM 2009. LNCS, vol. 5633, pp. 191–205. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Rabatel, J., Bringay, S., Poncelet, P.: Anomaly detection in monitoring sensor data for preventive maintenance. Expert Syst. Appl. 38(6), 7003–7015 (2011)

    Article  Google Scholar 

  12. Saxena, A., Saad, A.: Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems. Appl. Soft Comput. 7(1), 441–454 (2007)

    Article  Google Scholar 

  13. Shenoi, B.A.: Introduction to Digital Signal Processing and Filter Design. John Wiley & Sons (2005)

    Google Scholar 

  14. Tax, D.: One-class classification: Concept learning in the absence of counter-examples. PhD thesis, Technische Universiteit Delft (2001)

    Google Scholar 

  15. Yilboga, H., Eker, O.F., Guculu, A., Camci, F.: Failure prediction on railway turnouts using time delay neural networks. In: IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, pp. 134–137 (2010)

    Google Scholar 

  16. Zhang, J., Yan, Q., Zhang, Y., Huang, Z.: Novel fault class detection based on novelty detection methods. In: Huang, D., Li, K., Irwin, G. (eds.) Intelligent Computing in Signal Processing and Pattern Recognition. LNCIS, vol. 345, pp. 982–987. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pereira, P., Ribeiro, R.P., Gama, J. (2014). Failure Prediction – An Application in the Railway Industry. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds) Discovery Science. DS 2014. Lecture Notes in Computer Science(), vol 8777. Springer, Cham. https://doi.org/10.1007/978-3-319-11812-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11812-3_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11811-6

  • Online ISBN: 978-3-319-11812-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics