
ar
X

iv
:1

40
4.

76
10

v1
 [

cs
.D

S]
 3

0
A

pr
 2

01
4

An Efficient Algorithm for Enumerating

Chordless Cycles and Chordless Paths

Takeaki Uno1 and Hiroko Satoh1

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430,
JAPAN, e-mail: {uno,hsatoh}@nii.ac.jp

Abstract. A chordless cycle (induced cycle) C of a graph is a cycle
without any chord, meaning that there is no edge outside the cycle con-
necting two vertices of the cycle. A chordless path is defined similarly.
In this paper, we consider the problems of enumerating chordless cy-
cles/paths of a given graph G = (V,E), and propose algorithms taking
O(|E|) time for each chordless cycle/path. In the existing studies, the
problems had not been deeply studied in the theoretical computer sci-
ence area, and no output polynomial time algorithm has been proposed.
Our experiments showed that the computation time of our algorithms
is constant per chordless cycle/path for non-dense random graphs and
real-world graphs. They also show that the number of chordless cycles
is much smaller than the number of cycles. We applied the algorithm to
prediction of NMR (Nuclear Magnetic Resonance) spectra, and increased
the accuracy of the prediction.

1 Introduction

Enumeration is a fundamental problem in computer science, and many algo-
rithms have been proposed for many problems, such as cycles, paths, trees and
cliques[5,8,10,12,13,17]. However, their application to real world problems has
not been researched very much, due to the handling needed for the huge amount
of and the high computational cost. However, this situation is now changing,
thanks to the rapid increase in computational power, and the emergence of data
centric science. For example, the enumeration of all substructures frequently ap-
pearing in a database, i.e., frequent pattern mining, has been intensively studied.
This method is adopted for capturing the properties of databases, or for discov-
ering new interesting knowledge in databases. Enumeration is necessary for such
tasks because the objectives cannot be expressed well in mathematical terms.
The use of good models helps reduce the amount of output, and the use of effi-
cient algorithms enables huge databases to be more easily handled[9,1,11]. More
specifically, introducing a threshold value for the frequency, which enables con-
trolling the number of solutions. In such areas, minimal/maximal solutions are
also enumerated to reduce the number of solutions. For example, enumerating all
cliques is usually not practical while enumerating all maximal cliques, i.e. cliques
included in no other cliques, is often practical[13,10]. In real-world sparse graphs,
the number of maximal cliques is not exponential, so, even in large-scale graphs,

http://arxiv.org/abs/1404.7610v1

the maximal cliques can often be enumerated in a practically short time by a
stand alone PC even for graphs with millions of vertices. However, the enumera-
tion of maximum cliques, that have the maximum number of vertices among all
cliques, is often not acceptable in practice, since the purpose of enumeration is
to find all locally dense structures, and finding only maximum cliques will lose
relatively small dense structures, thus it does not cover whole the data.

Paths and cycles are two of the most fundamental graph structures. They
appear in many problems in computer science and are used for solving problems,
such as optimizations (e.g. flow problems) and information retrieval (e.g. con-
nectivity and movement of objects). Paths and cycles themselves are also used to
model other objects. For example, in chemistry, the size and the fusing pattern
of cycles in chemical graphs, representing chemical compounds, are considered
to be essential structural attributes affecting on several important properties of
chemical compounds, such as spectroscopic output, physical property, chemical
reactivity, and biological activity.

For a path/cycle P , an edge connecting two vertices of P but not included in
P is called a chord. A path/cycle without a chord is called a chordless path/cycle.
Since a chordless cycle includes no other cycle as a vertex set, it is considered
minimal. Thus, chordless cycles can be used to represent cyclic structures. For
instance, the size and fusing pattern of chordless cycles in chemical graphs as
well as other properties of chemical structures are taken into account when se-
lecting data for prediction of nuclear magnetic resonance (NMR) chemical shift
values[14]. Most chemical compounds contain cycles. In chemistry, the term ‘ring’
is used instead of ‘cycle’, for example a cycle consisting of 5 vertices is called
5-membered ring. Since the character of ring structures of chemical compounds
is assumed to be important to study the nature of the structure-property rela-
tionships, the ring perception is one of classical questions [2,3,4,7] in the context
of chemical informatics, so called chemoinformatics. Several kinds of ring struc-
tures, such as all rings and the smallest set of smallest ring (SSSR) are usually
included in a basic dataset of chemical information. NMR chemical shift predic-
tion is a successful case where the information about chordless cycles is employed
to improve the accuracy of the prediction. The path/cycle enumeration is sup-
posed to be useful also for analysis of network systems such as Web and social
networks.

In this paper, we consider the problem of enumerating all chordless paths
(resp., cycles) of the given graph. While optimization problems for paths and
cycles have been studied well, their enumeration problems have not. This is be-
cause there are huge numbers of paths and cycles even in small graphs. However,
we can reduce the numbers so that the problem becomes tractable by introducing
the concept of chordless. The first path/cycle enumeration algorithm was pro-
posed by Read and Tarjan in 1975[12]. Their algorithm takes as input a graph
G = (V,E) and enumerates all cycles, or all paths connecting given vertices s and
t, in O(|V |+ |E|) time for each. The total computation time is O((|V |+ |E|)N)
where N is the number of output cycles/paths. Ferreira et al. [6] recently pro-

Fig. 1. Left bold cycle is a chordless cycle, right bold cycle has two chords.

posed a faster algorithm, that takes time linear in the output size, that is the
sum of the lengths of the paths.

The chordless version was considered by Wild[19]. An algorithm based on the
principle of exclusion is proposed, but the computational efficiency was not con-
sidered deeply. In this paper, we propose algorithms for enumerating chordless
cycles and chordless paths connecting two vertices s and t (reported in 2003[18]).
Note that chordless cycles can be enumerated by chordless path enumeration.
The running time of the algorithm is O(|V |+ |E|) for each, the same as the Read
and Tarjan algorithm.

We experimentally evaluated the practical performance of the algorithms
for random graphs and real-world graphs. The results showed that its practical
computation time is much smaller thanO(|V |+|E|), meaning that the algorithms
can be used for large-scale graphs with non-huge amount of solutions. The results
also showed that the number of chordless cycles is drastically small compared to
the number of usual cycles.

2 Preliminaries

A graph is a combination of a vertex set and an edge set such that each edge is
a pair of vertices. A graph G with vertex set V and edge set E is denoted by
G = (V,E). An edge e of pair v and u is denoted by {u, v}. We say that the
edge connects u and v, e is incident to u and v, and v and u are adjacent to
each other, and call u and v end vertices of e. An edge with end vertices that are
the same vertex is called a self-loop. Two edges having the same end vertices u
and v are called multi-edges. We deal only with graphs with neither a self-loop
nor a multi-edge. This restriction does not lose the generality of the problem
formulation.

A path is a graph of vertices and edges composing a sequence v1, {v1, v2}, v2,
{v2, v3}, . . . , {vk−1, vk}, vk satisfying vi 6= vj and i 6= j. The v1 and vk are called
the end vertices of the path. If the end vertices of P are s and t, the path is called
an s-t path. When v1 = vk holds, a path is called a cycle. Here we represent
paths and cycles by vertex sequences, such as (v1, . . . , vk). An edge connecting
two vertices of a path/cycle P and not included in P is called a chord of P .
A path/cycle P such that the graph includes no chord of P is called chordless.
Figure 1 shows examples. In a set system composed of the vertex sets of cycles

(resp., s-t paths), the vertex set of a chordless cycle (resp., s-t path) is a minimal
element.

For a graph G and a vertex subset S of G, G \S denotes the graph obtained
from G by removing all vertices of S and all edges incident to some vertices in
S. For a vertex v, N(v) denotes the neighbor of v, that is, the set of vertices
adjacent to v. For a vertex set S and a vertex v, S \ v and S ∪ v denote S \ {v}
and S ∪ {v}, respectively. For a path P and its end vertex v, P \ v denotes the
path obtained by removing v from P .

Property 1. There is a chordless s-t path if and only if there is an s-t path.

Proof. A chordless s-t path is an s-t path, thus only if part is true. If an s-t path
exists, a shortest path from s to t is a chordless s-t path, and thus it always
exists. ⊓⊔

Property 2. A vertex v is included in a cycle if and only if v is included in a
chordless cycle.

Proof. If v is not included in any cycle, it obviously is not included in any
chordless cycle. Hence, we investigate the case in which v is included in a cycle
C. If C is chordless, we are done. If C has a chord, the addition of the chord
splits C into two smaller cycles, and v is always included in one of them. We
then consider the cycle as C. The cycle with three vertices can not have a chord,
thus we always meet a chordless cycle including v. ⊓⊔

For a recursive algorithm, an iteration means the computation from the be-
ginning of a recursive call to its end, excluding any computation done in recursive
calls generated in the iteration. If an iteration I recursively calls an iteration I ′,
I ′ is called a child of I, and I is called the parent of I ′.

3 Algorithm for Chordless s-t Path Enumeration

Our enumeration problem is formulated as follows.

Chordless s-t path enumeration problem

For a given graph G = (V,E) and two vertices s and t, enumerate all chordless
s-t paths included in G.

We first observe that chordless cycle enumeration is done with chordless s-t
path enumeration by repeating steps; (1) for a vertex s, enumerate chordless s-t
paths in G \ {s, t} for each vertex t adjacent to s, and (2) remove s from the
graph. Here G \ {s, t} is the graph obtained from G by removing the edge {s, t}.
This implies that we only have to consider chordless s-t path enumeration.

Lemma 1. For a vertex v ∈ N(s), P is a chordless s-t path including v if and

only if P \ s is a chordless v-t path of the graph G \ (N(s) \ v).

a b c

d

e

f

g

h

s

t

s

a

f

c

j

t

d e

b

ti

f

g

f

j

i ge

h h

j

t

j

t

t

i

t

i

h

j

t

t

Fig. 2. Tree on the right represents recursive structure of s-t path enumeration
in the graph on left; bold lines correspond to recursive calls in step 2, and dotted
lines correspond to those in step 6.

Proof. If P \s is a chordless v-t path in G\ (N(s)\v), P is an s-t path all whose
chords are incident to s. Since P has no vertex in N(s) \ v, no vertex of P other
than v is adjacent to s. Thus, P has no chord incident to s, and is chordless.

If P is a chordless s-t path including v, no vertex u ∈ N(s) \ v is included
in P , since the edge {s, u} would be a chord if was included. Thus, P \ s is a
chordless v-t path in G \ (N(s) \ v). ⊓⊔

Lemma 2. The set of chordless s-t paths of G is partitioned into disjoint sets

of chordless s-t paths in the graphs G \ (N(s) \ v) for each v.

Proof. Suppose that P is a chordless s-t path in G. Then, from lemma 1, P
includes exactly one vertex among N(s). If P includes v ∈ N(s), P \ s is a
chordless v-t path in G\(N(s)\v), thus P is a chordless s-t path in G\(N(s)\v).
Since P is not an s-t path in G \ (N(s) \ u) for any u ∈ N(s) \ v, the statement
holds. ⊓⊔

From the lemma, we obtain the following algorithm. The Q is the sequence
of vertices attached to the paths in the ancestor iterations, and set to be empty
at the start of the algorithm.

Enum Chordless Path (G = (V,E), s, t, Q)
1. if edge {s, t} exists in E then output Q ∪ t; return
2. for each v ∈ N(s) s.t. a v-t path exists in G \ (N(s) \ v) do
3. call Enum Chordless Path ((G \ (N(s) \ v)) \ s, v, t, Q ∪ v)
4. end for

When a recursive call is generated in an iteration of the algorithm, G\(N(s)\
v) is generated from G by removing vertices and edges. The removed vertices
and edges are kept in memory so that G can be reconstructed from the graph. A
removed edge or vertex is not removed again in the descendants of the iteration.
Thus, the accumulated memory usage for these removed vertices and edges is
O(|V |+ |E|), and the space complexity of the algorithm is O(|V |+ |E|).

In step 2, all vertices v ∈ N(s) such that a v-t path exists in G \ (N(s) \ v)
must be listed. If and only if the condition in step 2 holds, there is a vertex
u ∈ N(v) such that a u-t path exists in (G \N(s)) \ s. Thus, those vertices can
be listed by computing the connected component including t in G \N(s) \ s and
checking the condition in step 2 for all u ∈ N(v) for all v ∈ N(s). This can
be done in O(|V | + |E|) time. The construction of (G \ (N(s) \ v)) \ s is done
in O(|N(v)|) time by constructing it from (G \ N(s)) \ s. Therefore, the time
complexity of an iteration is O(|V |+ |E|).

Let us consider the recursion tree of the algorithm which is a tree represent-
ing the recursive structure of the algorithm. The vertex of the recursion tree
corresponds to an iteration, and each iteration and its parent are connected by
an edge. The leaves correspond to the iterations generating no recursive calls,
and the algorithm outputs a solution on each leaf. Because of the condition given
placed on vertices in step 2, there is always at least one s-t path in the given
graph. This implies that at least one recursive call occurs when step 2 is exe-
cuted. Hence, the algorithm outputs a solution at every leaf of the recursion tree.
The depth of the recursion tree is O(|V |) since at least one vertex is removed
from the graph to generate a recursive call. We can conclude from these obser-
vations that the time complexity of the algorithm is O(N |V |(|V |+ |E|)) where
N is the number of chordless s-t paths in G. Next, we discuss the reduction of
the time complexity to O(N(|V |+ |E|)).

We first rewrite the above algorithm as follows. We denote the vertex next
to v in path P by nxt(v). Note that although we introduce several variables, the
algorithms are equivalent.

Enum Chordless Path2 (G = (V,E), s, t, Q)
1. if s is adjacent to t then output Q ∪ t ; return
2. P := a chordless s-t path in G

3. call Enum Chordless Path2 (G \ (N(s) \ nxt(s)), nxt(s), t, Q ∪ nxt(s))
4. for each v ∈ N(s), v 6= nxt(s) do
5. if there is a v-t path in G \ (N(s) \ v) then
6. call Enum Chordless Path2 (G \ (N(s) \ v), v, t, Q ∪ v)
7. end for

We further rewrite the algorithm as follows. We compute the chordless s-
t path P computed in step 2 of the above algorithm, before the start of the
iteration, i.e., in its parent, and give it as a parameter to the recursive call.

Enum Chordless Path3 (G = (V,E), s, t, Q, P)
1. if s is adjacent to t then output Q ∪ t ; return
2. call Enum Chordless Path3 (G \ (N(s) \ nxt(s)), nxt(s), t, Q ∪ nxt(s), P \ s)
3. for each v ∈ N(s), v 6= nxt(s) do
4. if there is an v-t path in G \ (N(s) \ v) then
5. P := a chordless v-t path in G \ (N(s) \ v) (found by a breadth first search)
6. call Enum Chordless Path3 (G \ (N(s) \ v), v, t, Q ∪ v, P)
7. end if

8. end for

Figure 2 illustrates an example of the recursive structure of this algorithm.
The tail of an arrow is a parent and the head is its child. We call the child
generated in step 2 first child, and the arrow pointing at the first child is drawn
with a bold line. We can make a path by following the bold-arrows, and we call
a maximal such path a straight path. Since the bottom of a straight path is a
leaf, the number of straight paths is bounded by the number of chordless paths.
Since the head of a non-bold arrow always points an end of a straight path, the
number of non-bold arrows, that correspond to the recursive calls done in step
6, is bounded by the number of straight paths.

From these observations, we infer the following points regarding time com-
plexity.

– An iteration takes O(|V |+ |E|) time when a chordless path is output. This
computation time is O(|V |+ |E|) per chordless path.

– Steps 1 and 2 take O(NN(s)) time where NN(s) is the number of edges
adjacent to vertices in N(s). This time is spent checking the adjacency of s
and t and constructing G \ (N(s) \ v) for all v ∈ N(s). This comes from that
G \ (N(s) \ v) can be constructed from G \N(s) by adding edges adjacent
to v in O(|N(v)|) time.

– The number of executions of the for loop in step 3 is bounded by |N(s)|.
Their sum over all iterations in a straight path does not exceed the number
of edges.

– Steps 5 and 6 take O(|V | + |E|) time to find a chordless v-t path, and to
construct G \ (N(s) \ v). Since the recursive call in step 6 corresponds to a
straight path, this computation time is O(|V |+ |E|) per chordless path.

– The execution time for step 4 is O(|V |+ |E|).

We see from the above that the bottle neck in terms of time complexity is
step 4. The other parts of the algorithm takes O(|V | + |E|) time per chordless
s-t path. We speed up step 4 by using the following property.

Property 3. G \ {v} includes a v-t path for v ∈ N(s) if and only if there is a
vertex u ∈ N(v) \N(s) such that G \N(s) includes a u-t path. ⊓⊔

In each iteration we put mark on vertices u such that there is a u-t path in
G \N(s). Step 4 is then done in O(|N(v)|) time by looking at the marks on the
vertices in N(v). The marks can be put in short time, by updating the marks
put in the first child. The condition of step 4 is checked by finding all vertices
in G \N(s) from which going to t is possible. This also takes O(|V |+ |E|) time,
but the time is reduced by re-using the results of the computation done for the
first child. In the first child, marks are put according to the reachability to t in
G \ (N(s) ∪N(nxt(s))). To put marks for G \N(s), we find all vertices u such
that any u-t path in G \ N(s) includes a vertex of N(nxt(s)) \ N(s). This is
done by using a graph search starting from the vertices of N(nxt(s))\N(s) that
are adjacent to a marked vertex, and visiting only unmarked vertices. The time
taken is linear in the number of edges adjacent to newly marked vertices.

Consider the computation time with respect to step 4, for the iterations in a
straight path. In these operations, a vertex (resp., an edge) gets a mark at most

once, i.e., it never gets a mark twice. Thus, the total computation time for this
computation is linear in the sum of the degrees of marked vertices and vertices
in N(nxt(s)), and is bounded by O(|V |+ |E|). The computation time for step 4
is thus reduced to O(|V |+ |E|) per chordless s-t path. When a recursive call for
a non-first child is made, all marks are deleted. We then perform a graph search
starting from t to put the marks. Both steps take O(|V |+ |E|) time. Since this
computation is done only when generating non-first child, the total number of
occurrences of this computation is bounded by the number of maximal paths,
i.e., the number of chordless paths. Thus, this computation takes O(|V | + |E|)
time for each chordless path. The algorithm is written as follows.

Enum Chordless Path4 (G = (V,E), s, t, Q, P)
1. if s is adjacent to t then output Q ∪ t; go to 11
2. call Enum Chordless Path4 (G \ (N(s) \ nxt(s)), nxt(s), t, Q ∪ nxt(s), P \ s)
3. put mark by graph search on G \N(s) from vertices in N(nxt(s))
4. for each v ∈ N(s), v 6= nxt(s) do
4. if a vertex adjacent to v is marked then

5. delete marks from all vertices in G

6. P := a chordless v-t path in G \ (N(s) \ v)
7. call Enum Chordless Path4 (G \ (N(s) \ v), v, t, Q ∪ v, P)
8. recover the marks deleted in step 5, by graph search starting from t on G \N(s)
9. end if

10. end for

Theorem 1. The chordless s-t paths in a given graph G = (V,E) can be enu-

merated in O(|V |+ |E|) time per chordless path, in particular, polynomial time

delay.

Proof. We can see the correctness in the above. The time complexity of an
iteration is O(|V |+ |E|), and each iteration outputs an s-t-path. Moreover, the
height of the recursion tree is at most |V |, thus the time between two consecutive
output paths is bounded by O(|V |+ |E|)+O(|V |) = O(|V |+ |E|). This concludes
the theorem. ⊓⊔

Theorem 2. The chordless cycles in a given graph G = (V,E) can be enumer-

ated in O(|V | + |E|) time per chordless cycle, in particular, polynomial time

delay. ⊓⊔

4 Computational Experiments

The practical efficiency of the proposed algorithms is evaluated by computational
experiments. The results were compared with those of the cycle enumeration al-
gorithm proposed in [12]. The difference between the number of cycles and of
chordless cycles was also compared. The program was coded in C, and compiled
using gcc. The experiments were done on a PC with a Core i7 3GHz CPU. The

Table 1. Computational time (in seconds) for randomly generated graphs

edge density 10% 20% 30% 40% 50% 60% 70% 80% 90%

no. of vertices 50 0.18 0.12 0.098 0.089 0.082 0.08 0.085 0.1 0.11
75 0.17 0.12 0.099 0.088 0.079 0.074 0.077 0.088 0.1

100 0.17 0.12 0.099 0.09 0.083 0.081 0.089 0.095 0.12
150 0.2 0.12 0.099 0.098 0.077 0.075 0.083 0.103 0.14
200 0.18 0.12 0.1 0.088 0.081 0.078 0.085 0.11 0.17
300 0.19 0.12 0.1 0.087 0.082 0.083 0.091 0.12 0.21
400 0.17 0.12 0.1 0.089 0.08 0.086 0.1 0.15 0.26
600 0.18 0.11 0.12 0.12 0.11 0.1 0.13 0.23 0.42
800 0.2 0.12 0.14 0.13 0.11 0.11 0.13 0.26 0.54

1200 0.23 0.17 0.17 0.13 0.12 0.12 0.15 0.28 1
1600 0.24 0.19 0.14 0.13 0.13 0.14 0.21 0.29 1.3
2400 0.25 0.19 0.17 0.15 0.16 0.16 0.19 0.44 1.4
3200 0.29 0.23 0.2 0.19 0.18 0.2 0.25 0.61 1.79
4800 0.28 0.28 0.27

code is available at the author’s web site (http://research.nii.ac.jp/ũno/codes.html).
We did not use multiple cores, and the memory usage was less than 4MB. The
instance graphs were random graphs and the real-world graphs taken from the
UCI machine learning repository[16]. All the test instances shown here are down-
loadable from the author’s web site, except for those from UCI repository. Tables
1 to 4 summarize the computation time, number of cycles, and number of chord-
less cycles for each instance, and clarify the effectiveness of the chordless cycle
model and our algorithm.

The computation time results for randomly generated graphs are shown in
Table 1. The edge density means the probability of being connected by an edge
for any two vertices. Execution of an enumeration algorithm involves many it-
erations with different input graphs, thus we thought that there are sufficiently
many samples even in one execution of the algorithm. Therefore, we generated
just one instance for each parameter. Each cell represents the computation time
needed for 10,000 cycles or chordless cycles. When the computation time was
too long so that the number of output cycles exceeded one million, we stopped
the computation.

When the edge density was close to 100%, almost all the chordless cycles were
triangles. In this case, intuitively, the algorithm spent O(|V ||E|) = O(|V |3) time
to find O(|V |2) chordless cycles. In contrast, it took almost constant time for
each chordless cycle in sparse graphs. This is because the graph was reduced by
repeated recursive calls, and at the bottom levels, the graph sizes were usually
constant.

Table 2 shows that the number of chordless cycles exponentially increased
against with the edge density, but not as much as usual cycles. Table 3 shows
the experimental results for sparse graphs. The graphs were generated by adding
chords randomly to a cycle of n vertices so that the average degree was four.
These sparse graphs included so many chordless cycles. The graphs with at most

http://research.nii.ac.jp/~uno/codes.html

Table 2. Number of chordless cycles (upper) and of cycles (lower)

edge density 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

no. of vertices 10 1 3 14 20 41 45 63 81 120
0 1 4 116 352 2302 3697 24k 108k

15 0 10 34 116 165 193 247 297 350 455
0 36 1470 613k 6620k 55525k - - - -

20 1 78 298 523 637 752 771 846 908 1140
1 56k 9114k - - - - - - -

25 8 1218 2049 2387 2099 1891 1775 1854 1928 2300

50 64k 395k 267k 146k 82k 49k 34k 23k 18k 19k

75 119379k 69357k 14504k 3679k 1158k 465k 221k 119k 73810 67525

100 - - - 40436k 8269k 2395k 877k 393k 199k 161k

150 - - - - 149022k 27483k 6641k 2167k 854k 551k

200 - - - - - 167408k 30334k 7755k 2466k 1313k

300 - - - - - - - 51043k 11457k 4455k

400 - - - - - - - - 35154k 10586k

Table 3. Computation time and number of chordless cycles for sparse graphs

graph size (no. of vertices) 10 20 30 40 50 60 70 80 90

no. of chordless cycles 12 90 743 5371 89164 853704 4194491 45634757 -
time for 10,000 chordless cycles 16.6 3.33 0.53 0.22 0.18 0.2 0.23 0.24 -

100 vertices were solved in a practically short time, and the computation time
for each chordless cycle were almost the same.

Table 4 shows the number of chordless cycles with limited lengths including a
vertex (the first vertex) for the real-world data, taken from the UCI repository.
The number of all chordless cycles is shown at the bottom for reference. The
graphs were basically sparse, and globally well connected, and thus included a
large number of cycles. Even in such cases, by giving an upper bound of the
length, Some graphs can be made tractable in such cases by placing an upper
bound on the length. These results show the possibility of using chordless cycles
with limited lengths for practical data analysis of real-world graphs such as those
for social networks.

4.1 Application to NMR Prediction

Chordless cycle enumeration has already been implemented as a part of a database
system of chemoinformatics[14], composed of structural data of chemical com-
pounds. In this system, the number of chordless cycles in the chemical graph
of a chemical compound is considered to be an attribute of the compound. In
response to a query about the chemical structure of a compound, the system
searches in the database for structures partially similar to the structure of query
compound, and predict some functions of the query compound. A chemical graph
is usually sparse and is globally a tree or a combination of several large cycles.

Table 4. No. of chordless cycles including a vertex (of ID 0), for real-world
graphs

adjnoun astro-ph breast celegen cond-mat-2005 cond-mat large dolphins

(no. of vertices) 114 16708 7539 298 40423 30561 64
(no. of edges) 425 121251 5848 2359 175693 24334 159

length < 5 8 327 - 3342 393 6 26
length < 8 251 - 1738k - 6 320

length < 16 65350 - - - - 6 1780
#chord. cyc. 66235k - - - - - 6966

football human ppi karate lesmis netscience polblogs polboopks power

(no. of vertices) 117 10347 36 79 1591 1492 107 4943
(no. of edges) 616 5418 78 254 2742 19090 441 6594

length < 5 81 1838 37 3 1 35881 21 0
length < 8 11869 - 38 3 1 - 187 4

length < 16 256664k - 38 3 1 - 34742 60
#chord. cyc. - - 103 594 5760 - 2273k -

Small components can be attached to the large cycles. Thus, the number of
chordless cycles is not so huge and is tractable in most cases.

The program code was implemented in the CAST/CNMR system for predict-
ing the 13C-NMR chemical shift[14,15]. The codes and a more precise description
of this system are available at http://research.nii.ac.jp/h̃satoh/subjects/NMR-e.html.
The information obtained about chordless cycles is used to improve the accu-
racy for the predicted values when the ring attributes affects the NMR spec-
trum. The CAST/CNMR system predicts chemical shifts by using a chemical
structure-spectrum database, containing mainly natural organic products and
their related synthetic compounds. Since most of the compounds include chains
of fused rings, enumerating all rings for these compounds would greatly increase
the output size, with lots of data useless for NMR prediction. Therefore, the
chordless cycle was adopted as a relevant ring attribute for the CAST/CNMR
system. For accurate NMR prediction for carbon atoms, an error within 1.0 ppm
(parts per million) is generally required. Use of chordless cycle information re-
duced error values of -4.1 to 1.6 ppm for some problematic carbon atoms to less
than 1.0 ppm[14].

5 Conclusion

We proposed an algorithm for enumerating all chordless s-t paths, that is ap-
plicable to chordless cycle enumeration without increasing the time complexity.
By reusing the results of the subroutines, the computation time is reduced to
O(|V | + |E|) for each chordless path. The results of the computational experi-
ments showed that the algorithm works well for both random graphs and real-
world graphs; the computation time was O(|V |) in dense graphs, and almost
constant for sparse graphs. The results also showed that the number of chord-

http://research.nii.ac.jp/~hsatoh/subjects/NMR-e.html

less cycles is small compared to the number of usual cycles. This algorithm thus
paves the way to efficient use of cycle enumeration in data mining.

References

1. T. Asai, H. Arimura, T. Uno and S. Nakano, Discovering Frequent Substructures
in Large Unordered Trees, LNAI 2843 (Proc. DS 2003), pp. 47–61 (2003).

2. A. T. Balaban, P. Filip, T. S. Balaban, Computer Program for Finding All Possible
Cycles in Graphs, J. Comput. Chem. 6, pp 316-329 (1985).

3. G. M. Downs, V. J. Gillet, J. D. Holiday, M. F. Lynch, Review of Ring Perception
Algorithms for Chemical Graphs, J. Chem. Inf. Comp. Sci. 29, pp. 172–187 (1989).

4. G. M. Downs, Ring perception, The Encyclopedia of Computational Chemistry 4,
John Wiley & Sons, Chichester, UK, 1998.

5. D. Eppstein, Finding the k Smallest Spanning Trees, LNCS 447, pp. 38–47 (1990).
6. R. Ferreira, R. Grossi, A. Marino, N. Pisanti, R. Rizzi and G. Sacomoto, Optimal

Listing of Cycles and st-Paths in Undirected Graphs, SODA 2013,
7. T. Hanser, P. Jauffret, G. Gaufmann, A New Algorithm for Exhaustive Ring Per-

ception in a Molecular Graph, J. Chem. Inf. Comp. Sci. 36, pp. 1146–1152 (1996).
8. S. Kapoor and H. Ramesh, An Algorithm for Enumerating All Spanning Trees of

a Directed Graph, Algorithmica 27, pp. 120–130 (2000).
9. A. Inokuchi, T. Washio and H. Motoda, Complete Mining of Frequent Patterns

from Graphs, Machine Learning 50, pp. 321–354 (2003).
10. K. Makino and T. Uno, New Algorithms for Enumerating All Maximal Cliques,

LNCS 3111 (Proc. SWAT 2004), pp. 260–272 (2004).
11. S. Parthasarathy, M. J. Zaki, M. Ogihara and S. Dwarkadas, Incremental and

Interactive Sequence Mining, CIKM 1999, pp. 251–258 (1999).
12. R. C. Read and R. E. Tarjan, Bounds on Backtrack Algorithms for Listing Cycles,

Paths, and Spanning Trees, Networks 5, pp. 237–252 (1975).
13. E. Tomita, A. Tanaka and H. Takahashi, The Worst-case Time Complexity for

Generating all Maximal Cliques and Computational Experiments, Theo. Comp.
Sci. 363, pp. 28–42 (2006).

14. H. Satoh, H. Koshino, T. Uno, S. Koichi, S. Iwata and T. Nakata, Effective consid-
eration of ring structures in CAST/CNMR for highly accurate 13C NMR chemical
shift prediction, Tetrahedron 61, pp. 7431-7437 (2005).

15. H. Satoh, H. Koshino, J. Uzawa, T. Nakata, CAST/CNMR: Highly Accurate 13C
NMR Chemical Shift Prediction System Considering Stereochemistry, Tetrahedron
59, pp 4539-4547 (2003).

16. UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/
17. T. Uno, A Fast Algorithm for Enumerating Bipartite Perfect Matchings, LNCS

2223 (Proc. ISAAC 2001), pp. 367–379 (2001).
18. T. Uno, An Output Linear Time Algorithm for Enumerating Chordless Cycles,

IPSJ, SIG-AL 92 (2003) (In Japanese, technical report, non-refereed).
19. M. Wild, Generating all Cycles, Chordless Cycles, and Hamiltonian Cycles with

the Principle of Exclusion, J. Discrete Alg. 6, pp. 93–102 (2008).

http://archive.ics.uci.edu/ml/

	An Efficient Algorithm for Enumerating Chordless Cycles and Chordless Paths
	Takeaki Uno and Hiroko Satoh

