Skip to main content

Categorize, Cluster, and Classify: A 3-C Strategy for Scientific Discovery in the Medical Informatics Platform of the Human Brain Project

  • Conference paper
Discovery Science (DS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8777))

Included in the following conference series:

Abstract

One of the goals of the European Flagship Human Brain Project is to create a platform that will enable scientists to search for new biologically and clinically meaningful discoveries by making use of a large database of neurological data enlisted from many hospitals. While the patients whose data will be available have been diagnosed, there is a widespread concern that their diagnosis, which relies on current medical classification, may be too wide and ambiguous and thus hides important scientific information.

We therefore offer a strategy for a search, which combines supervised and unsupervised learning in three steps: Categorization, Clustering and Classification. This 3-C strategy runs as follows: using external medical knowledge, we categories the available set of features into three types: the patients’ assigned disease diagnosis, clinical measurements and potential biological markers, where the latter may include genomic and brain imaging information. In order to reduce the number of clinical measurements a supervised learning algorithm (Random Forest) is applied and only the best predicting features are kept. We then use unsupervised learning in order to create new clinical manifestation classes that are based on clustering the selected clinical measurement. Profiles of these clusters of clinical manifestation classes are visually described using profile plots and analytically described using decision trees in order to facilitate their clinical interpretation. Finally, we classify the new clinical manifestation classes by relying on the potential biological markers. Our strategy strives to connect between potential biomarkers, and classes of clinical and functional manifestation, both expressed by meaningful features. We demonstrate this strategy using data from the Alzheimer’s Disease Neuroimaging Initiative cohort (ADNI).

An Erratum for this chapter can be found at http://dx.doi.org/10.1007/978-3-319-11812-3_31

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C., Harvey, D., Jack, C.R., Jagust, W., Liu, E., Morris, J.C., Petersen, R.C., Saykin, A.J., Schmidt, M.E., Shaw, L., Shen, L., Siuciak, J.A., Soares, H., Toga, A.W., Trojanowski, J.Q.: The Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimer’s Dement 9(5), e111–e194 (2013)

    Google Scholar 

  2. American Psychiatric Association, DSM-5 criteria for major neurocognitive disorder due to AD, 5th edn. Arlington, VA (2013)

    Google Scholar 

  3. Sonnen, J.A., Montine, K.S., Quinn, J.F., Kaye, J.A., Breitner, J.C.S., Montine, T.J.: Biomarkers for cognitive impairment and dementia in elderly people. Lancet Neurol. 7(8), 704–714 (2008)

    Article  Google Scholar 

  4. Sunderland, T., Linker, G., Mirza, N., Putnam, K.T., Friedman, D.L., Kimmel, L.H., Bergeson, J., Manetti, G.J., Zimmermann, M., Tang, B., Bartko, J.J., Cohen, R.M.: Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 289(16), 2094–2103 (2094)

    Google Scholar 

  5. Yaffe, K., Weston, A., Graff-Radford, N.R., Satterfield, S., Simonsick, E.M., Younkin, S.G., Younkin, L.H., Kuller, L., Ayonayon, H.N., Ding, J., Harris, T.B.: Association of plasma beta-amyloid level and cognitive reserve with subsequent cognitive decline. JAMA 305(3), 261–266 (2011)

    Article  Google Scholar 

  6. Gupta, V.B., Laws, S.M., Villemagne, V.L., Ames, D., Bush, A.I., Ellis, K.A., Lui, J.K., Masters, C., Rowe, C.C., Szoeke, C., Taddei, K., Martins, R.N.: Plasma apolipoprotein e and Alzheimer disease risk: The AIBL study of aging. Neurology 76(12), 1091–1098 (2011)

    Article  Google Scholar 

  7. Evans, M.C., Barnes, J., Nielsen, C., Kim, L.G., Clegg, S.L., Blair, M., Leung, K.K., Douiri, A., Boyes, R.G., Ourselin, S., Fox, N.C.: Volume changes in Alzheimer’s disease and mild cognitive impairment: cognitive associations. Eur. Radiol. 20(3), 674–682 (2010)

    Article  Google Scholar 

  8. Langbaum, J.B.S., Chen, K., Lee, W., Reschke, C., Fleisher, A.S., Alexander, G.E., Foster, N.L., Michael, W., Koeppe, R.A., Jagust, W.J., Reiman, E.M.: Categorical and Correlational Analyses of Baseline Fluorodeoxyglucose Positron Emission Tomography Images from the Alzheimer’s Disease. Neuroimage 45(4), 1107–1116 (2010)

    Article  Google Scholar 

  9. Tosun, D., Schuff, N., Truran-Sacrey, D., Shaw, L.M., Trojanowski, J.Q., Aisen, P., Peterson, R., Weiner, M.W.: Relations between brain tissue loss, CSF biomarkers and the ApoE genetic profile: A longitudinal MRI study. Neurobiol. Aging 31(8), 1340–1354 (2011)

    Article  Google Scholar 

  10. Cui, Y., Liu, B., Luo, S., Zhen, X., Fan, M., Liu, T., Zhu, W., Park, M., Jiang, T., Jin, J.S.: Identification of conversion from mild cognitive impairment to Alzheimer’s disease using multivariate predictors. PLoS One 6(7), e21896 (2011)

    Google Scholar 

  11. Kohannim, O., Hua, X., Hibar, D.P., Lee, S., Chou, Y.-Y., Toga, A.W., Jack, C.R., Weiner, M.W., Thompson, P.M.: Boosting power for clinical trials using classifiers based on multiple biomarkers. Neurobiol. Aging 31(8), 1429–1442 (2010)

    Article  Google Scholar 

  12. Hinrichs, C., Singh, V., Xu, G., Johnson, S.C.: Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population. Neuroimage 55(2), 574–589 (2011)

    Article  Google Scholar 

  13. Zhang, D., Shen, D.: Multi modal multi task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59(2), 895–907 (2013)

    Article  Google Scholar 

  14. Walhovd, K.B., Fjell, M., Brewer, J., McEvoy, L.K., Fennema-Notestine, C., Hagler, D.J., Jennings, R.G., Karow, D., Dale, M.: Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR. Am. J. Neuroradiol. 31(2), 347–354 (2010)

    Article  Google Scholar 

  15. Johnson, K.A., Sperling, R.A., Gidicsin, C., Carmasin, J., Maye, J., Coleman, R.E., Reiman, E.M., Sabbagh, M.N., Sadowsky, C.H., Fleisher, A.S., Doraiswamy, P.M., Carpenter, A.P., Clark, C.M., Joshi, A.D., Lu, M., Grundman, M., Mintun, M.A., Pontecorvo, M.J., Skovronsky, D.: Florbetapir (F18-AV-450) PET to assess amyloid burden in Alzheimer’s disease dementia, mild cognitive impairment, and normal aging. Alzheimer’s Dement 9 (2013)

    Google Scholar 

  16. Shadlen, M.-F., Larson, E.B.: UpToDate: Evaluation of cognitive impairment and dementia

    Google Scholar 

  17. Longo, D., Fauci, A., Kasper, D., Hauser, S., Jameson, J., Loscalzo, J.: Harrison’s Principles of Internal Medicine, 18th edn., National Institute of Health, Bethesda, MD, National Institute of Allergy and Infectious Diseases, Brigham and Women’s Hospital (2011)

    Google Scholar 

  18. R Core Team, R: A language and environment for statistical computing

    Google Scholar 

  19. Liaw, A., Wiener, M.: Classification and Regression by randomForest. R News 2, 18–22 (2002)

    Google Scholar 

  20. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.: Cluster Analysis Basics and Extensions. R package version 1.14.4. CRAN (2013)

    Google Scholar 

  21. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in data set via the gap statistic. Journal of the Royal Statistical Society: Series B, Part 2, 411–423 (2001)

    Google Scholar 

  22. Revelle, W.: psych: Procedures for psychological, psychometric, and personality research, pp. 0–90. Northwest. Univ. Evanston, Illinois (2010)

    Google Scholar 

  23. Malterud, K.: The art and science of clinical knowledge: evidence beyond measures and numbers. Lancet 358(9279), 397–400 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Galili, T., Mitelpunkt, A., Shachar, N., Marcus-Kalish, M., Benjamini, Y. (2014). Categorize, Cluster, and Classify: A 3-C Strategy for Scientific Discovery in the Medical Informatics Platform of the Human Brain Project. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds) Discovery Science. DS 2014. Lecture Notes in Computer Science(), vol 8777. Springer, Cham. https://doi.org/10.1007/978-3-319-11812-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11812-3_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11811-6

  • Online ISBN: 978-3-319-11812-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics