Skip to main content

A New Magnetotactic Bacteria Optimization Algorithm Based on Moment Migration

  • Conference paper
Advances in Swarm Intelligence (ICSI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8794))

Included in the following conference series:

Abstract

Magnetotactic bacteria is a kind of polyphyletic group of prokaryotes with the characteristics of magnetotaxis that make them orient and swim along geomagnetic field lines. Its distinct biology characteristics are useful to design new optimization technology. In this paper, a new bionic optimization algorithm named Magnetotactic Bacteria Moment Migration Algorithm(MBMMA) is proposed. In the proposed algorithm, the moments of a chain of magnetosomes are considered as solutions. The moments of relative good solutions can migrate each other to enhance the diversity of the MBMMA. It is compared with Genetic Algorithm, Differential Evolution and CLPSO on standard functions problems. The experiment results show that the MBMMA is effective in solving optimization problems. It shows good and competitive performance compared with the compared algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dorigo, M., Manianiezzo, V., Colorni, A.: The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Sys. Man and Cybernetics 26, 1–13 (1996)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  3. Tereshko, V.: Reaction–diffusion Model of a Honeybee Colony’s Foraging Behaviour. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 807–816. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Bastos, F., Carmelo, J.A., Lima, N., De Fernando, B.: A Novel Search Algorithm Based on Fish School Behavior. In: IEEE Int. Conf. on Systems, Man, and Cybernetics, Singapore, pp. 32–38 (2002)

    Google Scholar 

  5. Müeller, S., Marchetto, J., Airaghi, S., Koumoutsakos, P.: Optimization Based on Bacterial Chemotaxis. IEEE Trans on Evolutionary Computation 6, 16–29 (2002)

    Article  Google Scholar 

  6. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Trans. on Evolutionary Computation 1, 67–82 (1997)

    Article  Google Scholar 

  7. Faivre, D., Schuler, D.: Magnetotactic Bacteria and Magnetosomes. Chem. Rev. 108, 4875–4898 (2008)

    Article  Google Scholar 

  8. Mitchell, J.G., Kogure, K.: Bacterial Motility: Links to the Environment and a Driving Force for Microbial Physics. FEMS Microbiol. Ecol. 55, 3–16 (2006)

    Article  Google Scholar 

  9. Mo, H.W., Xu, L.F.: Magnetotactic Bacteria Optimization Algorithm for Multimodal Optimization. In: IEEE Symposium on Swarm Intelligence (SIS), Sinpore (2013)

    Google Scholar 

  10. Michael, W., Leida, G.A., Alfonso, F.D., et al.: Barros Magnetic Optimization in a Multicellular Magnetotactic Organism. Biophysical Journal 92, 661–670 (2007)

    Article  Google Scholar 

  11. Beyer, H.G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001)

    Book  Google Scholar 

  12. Storn, R., Price, K.: Differential Evolution-a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Trans. Evolut. Comput. 10, 281–295 (2006)

    Article  Google Scholar 

  14. García, S., Fernández, A., Luengo, J.: A Study of Statistical Techniques and Performance Measures for Genetics-Based Machine Learning: Accuracy and Interpretability. Soft Comput. Fusion Found. Methodol. Appl. 13, 959–977 (2009)

    Google Scholar 

  15. Cai, Y.Q., Wang, J.H., Yin, J.: Learning-enhanced Differential Evolution for Numerical Optimization. Soft Comput. 16, 303–330 (2012)

    Article  Google Scholar 

  16. Derrac, J., García, S., Molina, D., Herrera, F.: A Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolutionary and Swarm Intelligence Algorithms. Swarm Evol. Comput. 1, 3–18 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mo, H., Liu, L., Geng, M. (2014). A New Magnetotactic Bacteria Optimization Algorithm Based on Moment Migration. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds) Advances in Swarm Intelligence. ICSI 2014. Lecture Notes in Computer Science, vol 8794. Springer, Cham. https://doi.org/10.1007/978-3-319-11857-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11857-4_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11856-7

  • Online ISBN: 978-3-319-11857-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics