Skip to main content

A Novel Quantum Evolutionary Algorithm Based on Dynamic Neighborhood Topology

  • Conference paper
Advances in Swarm Intelligence (ICSI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8794))

Included in the following conference series:

  • 2708 Accesses

Abstract

A variant of quantum evolutionary algorithm based on dynamic neighborhood topology(DNTQEA) is proposed in this paper. In DNTQEA, the neighborhood of a quantum particle are not fixed but dynamically changed, and the learning mechanism of a quantum particle includes two parts, the global best experience of all quantum particles in population, and the best experiences of its all neighbors, which collectively guide the evolving direction. The experimental results demonstrate the better performance of the DNTQEA in solving combinatorial optimization problems when compared with other quantum evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Narayanan, A., Moore, M.: Quantum-inspired Genetic Algorithms. In: Proceedings of IEEE International Conference on Evolutionary Computation, Nagoya, pp. 61–66 (1996)

    Google Scholar 

  2. Han, K.H., Kim, J.H.: Genetic Quantum Algorithm and its Application to Combinatorial Optimization Problem. In: Proceedings of the 2000 Congress on Evolutionary Computation, Piscataway, vol. 2, pp. 1354–1360 (2000)

    Google Scholar 

  3. Han, K.H., Kim, J.H.: Quantum-inspired Evolutionary Algorithm for a Class of Combinatorial Optimization. IEEE Trans. Evolutionary Computation. 6(6), 580–593 (2000)

    Article  Google Scholar 

  4. Han, K., Kim, J.: Quantum-Inspired Evolutionary Algorithms with a New Termination Criterion, He Gate, and Two-Phase Scheme. IEEE Transactions on Evolutionary Computation 8(2), 156–169 (2004)

    Article  Google Scholar 

  5. Platel, M.D., Schliebs, S., Kasabov, N.: Quantum-Inspired Evolutionary Algorithm: A Multimodel EDA. IEEE Transactions on Evolutionary Computation 13(6), 1218–1232 (2009)

    Article  Google Scholar 

  6. Hong, Y., Pen, K.: Optimal VAR Planning Considering Intermittent Wind Power Using Markov Model and Quantum Evolutionary Algorithm. IEEE Transactions on Power Delivery 25(4), 2987–2996 (2010)

    Article  Google Scholar 

  7. Sinha, N., Hazarika, K.M., Paul, S., Shekhar, H., Karmakar, A.A.: Improved Real Quantum Evolutionary Algorithm for Optimum Economic Load Dispatch with Non-convex Loads. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 689–700. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Bryden, K.M., Daniel, A.A., Steven, C., Stephen, J.W.: Graph-Based Evolutionary Algorithms. IEEE Trans. Evol. Comput. 10(5), 550–567 (2006)

    Article  Google Scholar 

  9. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. IEEE Proceedings of the Congress on Evolutionary Computation 2, 1671–1676 (2002)

    Google Scholar 

  10. Tayarani-N, M.H., Akbarzadeh-T, M.R.: A Sinusoid Size Ring Structure Quantum Evolutionary Algorithm. Proceeding of Cybernetics and Intelligent Systems, 1165–1169 (2008)

    Google Scholar 

  11. Najaran, T., Akbarzadeh, T., Mohammad, R.: Improvement of Quantum Evolutionary Algorithm with Functional Sized Population. Applications of Soft Computing 58, 389–398 (2009)

    Article  Google Scholar 

  12. Zhao, J., Sun, J., Xu, W.B.: A binary quantum-behaved particle swarm optimization algorithm with cooperative approach. International Journal of Computer Science 10(1), 112–118 (2013)

    Google Scholar 

  13. Hossain, A.M., Hossain, K.M., Hashem, M.: A generalized hybrid real-coded quantum evolutionary algorithm based on particle swarm theory with arithmetic crossover. International Journal of Computer Science & Information Technology 2(4), 172–187 (2010)

    Article  Google Scholar 

  14. Layeb, A.: A quantum inspried particle swarm algorithm for solving the maximum statisfiability problem. International Journal of Combinatorial Optimization Problems and Informatics 1(1), 13–23 (2010)

    Google Scholar 

  15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  16. Zhong, W., Liu, J., Xue, M., Jiao, L.: A Multi-agent Genetic Algorithm for Global Numerical Optimization. IEEE Trans. Sys, Man and Cyber. 34, 1128–1141 (2004)

    Article  Google Scholar 

  17. Khorsand, A.-R., Akbarzadeh-T, M.-R.: Quantum Gate Optimization in a Meta-Level Genetic Quantum Algorithm. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3055–3062 (2005)

    Google Scholar 

  18. Koumousis, V.K., Katsaras, C.P.: A Saw-Tooth Genetic Algorithm Combining the Effects of Variable Population Size and Reinitialization to Enhance Performance. IEEE Trans. Evol. Comput. 10, 19–28 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Qi, F., Feng, Q., Liu, X., Ma, Y. (2014). A Novel Quantum Evolutionary Algorithm Based on Dynamic Neighborhood Topology. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds) Advances in Swarm Intelligence. ICSI 2014. Lecture Notes in Computer Science, vol 8794. Springer, Cham. https://doi.org/10.1007/978-3-319-11857-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11857-4_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11856-7

  • Online ISBN: 978-3-319-11857-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics