Skip to main content

A Unified Matrix-Based Stochastic Optimization Algorithm

  • Conference paper
Advances in Swarm Intelligence (ICSI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8794))

Included in the following conference series:

  • 2767 Accesses

Abstract

Various metaheuristics have been proposed recently and each of them has its inherent evolutionary, physical-based, and/or swarm intelligent mechanisms. This paper does not focus on any subbranch, but on the metaheuristics research from a unified view. The population of decision vectors is looked on as an abstract matrix and three novel basic solution generation operations, E[p(i,j)], E[p(c·i)] and E[i, p(c·i+j)], are proposed in this paper. They are inspired by the elementary matrix transformations, all of which have none latent meanings. Experiments with real-coded genetic algorithm, particle swarm optimization and differential evolution illustrate its promising performance and potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)

    Article  Google Scholar 

  2. Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)

    Article  Google Scholar 

  3. Dorigo, M., Stutzle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)

    Book  MATH  Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  6. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization 39(3), 459–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on Neural Networks IV, pp. 1942–1948. IEEE Press, Piscataway (1995)

    Google Scholar 

  8. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Leonora, B., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on metaheuristics for stochastic combinatorial optimization. Natural Computing 8(2), 239–287 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf Optimizer. Advances in Engineering Software 69, 46–61 (2014)

    Article  Google Scholar 

  11. Ju, Y.M.: Linear algebra, 2nd edn. Tsinghua University Press, Beijing (2002)

    Google Scholar 

  12. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: A gravitational search algorithm. Information Sciences 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  13. Storn, R., Price, K.: Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yao, X., Liu, Y., Lin, G.M.: Evolutionary Programming Made Faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  15. Zhan, Z.H., Zhang, J., Li, Y., et al.: Orthogonal learning particle swarm optimization. IEEE Trans. Evolut. Comput. 15(6), 832–847 (2011)

    Article  Google Scholar 

  16. Zhao, X.C., Lin, W.Q., Zhang, Q.F.: Enhanced Particle Swarm Optimization based on Principal Component Analysis and Line Search. Applied Mathematics and Computation 229(25), 440–456 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhao, X., Hao, J. (2014). A Unified Matrix-Based Stochastic Optimization Algorithm. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds) Advances in Swarm Intelligence. ICSI 2014. Lecture Notes in Computer Science, vol 8794. Springer, Cham. https://doi.org/10.1007/978-3-319-11857-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11857-4_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11856-7

  • Online ISBN: 978-3-319-11857-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics