Skip to main content

Fireworks Algorithm and Its Variants for Solving ICSI2014 Competition Problems

  • Conference paper
Advances in Swarm Intelligence (ICSI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8795))

Included in the following conference series:

Abstract

Firework algorithm (FWA) is a newly proposed swarm intelligence based optimization technique, which presents a different search manner by simulating the explosion of fireworks to search within the potential space till the terminal criterions are met. Since its introduction, a lot of improved work have been conducted, including the enhanced fireworks algorithm (EFWA), the dynamic search in FWA (dynFWA) and adaptive fireworks algorithm (AFWA). This paper is to use the FWA and its variants to take participate in the ICSI2014 competition, the performance among them are compared, and results on 2-, 10-, 30-dimensional benchmark functions are recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Swarm Intelligence Symposium, SIS 2007, pp. 120–127. IEEE (2007)

    Google Scholar 

  2. Yu, C., Kelley, L., Zheng, S.: Fireworks algorithm with differential mutation for solving the cec 2014 competition problems. In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE (2014)

    Google Scholar 

  3. Ding, K., Zheng, S., Tan, Y.: A gpu-based parallel fireworks algorithm for optimization. In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference, GECCO 2013, pp. 9–16. ACM, New York (2013), http://doi.acm.org/10.1145/2463372.2463377

    Chapter  Google Scholar 

  4. Gao, H., Diao, M.: Cultural firework algorithm and its application for digital filters design. International Journal of Modelling, Identification and Control 14(4), 324–331 (2011)

    Article  Google Scholar 

  5. He, W., Mi, G., Tan, Y.: Parameter optimization of local-concentration model for spam detection by using fireworks algorithm. In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013, Part I. LNCS, vol. 7928, pp. 439–450. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Imran, A.M., Kowsalya, M.: A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using fireworks algorithm. International Journal of Electrical Power & Energy Systems 62, 312–322 (2014)

    Article  Google Scholar 

  7. Imran, A.M., Kowsalya, M., Kothari, D.: A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks. International Journal of Electrical Power & Energy Systems 63, 461–472 (2014)

    Article  Google Scholar 

  8. Janecek, A., Tan, Y.: Iterative improvement of the multiplicative update nmf algorithm using nature-inspired optimization. In: 2011 Seventh International Conference on, Natural Computation (ICNC), vol. 3, pp. 1668–1672. IEEE (2011)

    Google Scholar 

  9. Janecek, A., Tan, Y.: Swarm intelligence for non-negative matrix factorization. International Journal of Swarm Intelligence Research (IJSIR) 2(4), 12–34 (2011)

    Article  Google Scholar 

  10. Janecek, A., Tan, Y.: Using population based algorithms for initializing nonnegative matrix factorization. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011, Part II. LNCS, vol. 6729, pp. 307–316. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Junzhi Li, S.Z., Tan, Y.: Adaptive fireworks algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE (2014)

    Google Scholar 

  12. Liu, J., Zheng, S., Tan, Y.: The improvement on controlling exploration and exploitation of firework algorithm. In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013, Part I. LNCS, vol. 7928, pp. 11–23. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Pei, Y., Zheng, S., Tan, Y., Hideyuki, T.: An empirical study on influence of approximation approaches on enhancing fireworks algorithm. In: Proceedings of the 2012 IEEE Congress on System, Man and Cybernetics, pp. 1322–1327. IEEE (2012)

    Google Scholar 

  14. Zheng, S., Andreas, J., Li, J., Tan, Y.: Dynamic search in fireworks algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE (2014)

    Google Scholar 

  15. Tan, Y., Xiao, Z.: Clonal particle swarm optimization and its applications. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 2303–2309. IEEE (2007)

    Google Scholar 

  16. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010, Part I. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Tan, Y., Li, J., Zheng, Z.: Icsi 2014 competition on single objective optimization (2014)

    Google Scholar 

  18. Zheng, S., Andreas, J., Tan, Y.: Enhanced fireworks algorithm. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2069–2077. IEEE (2013)

    Google Scholar 

  19. Zheng, S., Tan, Y.: A unified distance measure scheme for orientation coding in identification. In: 2013 IEEE Congress on Information Science and Technology, pp. 979–985. IEEE (2013)

    Google Scholar 

  20. Zheng, Y., Xu, X., Ling, H.: A hybrid fireworks optimization method with differential evolution. Neurocomputing (2012)

    Google Scholar 

  21. Zheng, Y.J., Song, Q., Chen, S.Y.: Multiobjective fireworks optimization for variable-rate fertilization in oil crop production. Applied Soft Computing 13(11), 4253–4263 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zheng, S., Liu, L., Yu, C., Li, J., Tan, Y. (2014). Fireworks Algorithm and Its Variants for Solving ICSI2014 Competition Problems. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds) Advances in Swarm Intelligence. ICSI 2014. Lecture Notes in Computer Science, vol 8795. Springer, Cham. https://doi.org/10.1007/978-3-319-11897-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11897-0_50

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11896-3

  • Online ISBN: 978-3-319-11897-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics