Skip to main content

Adaptive Object Learning for Robot Carinet

  • Conference paper
Social Robotics (ICSR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8755))

Included in the following conference series:

  • 3743 Accesses

Abstract

In this paper, an adaptive object learning method based on deep neural network is developed for a robot to learn features of moving objects, e.g., humans and vehicles, via observation. The proposed method provides a solution for the robot to learn unknown moving objects in a real-time scenario. A hybrid scheme of learning and identification is proposed to recognize the moving object by fusion of foreground segmentation and identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gates, B.: A robot in every home. Scientific American 296(1), 58–65 (2007)

    Article  Google Scholar 

  2. Fouhey, D.F., Collet, A., Hebert, M., Srinivasa, S.: Object recognition robust to imperfect depth data. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part II. LNCS, vol. 7584, pp. 83–92. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Romea, A.C., Xiong, B., Gurau, C., Hebert, M., Srinivasa, S.: Exploiting domain knowledge for object discovery (2013)

    Google Scholar 

  4. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  6. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2018–2025. IEEE (2011)

    Google Scholar 

  7. Ouyang, W., Wang, X.: Joint deep learning for pedestrian detection. In: ICCV (2013)

    Google Scholar 

  8. Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gregor, K., Mathieu, M., Cun, Y.L.: Learning convolutional feature hierarchies for visual recognition. In: Advances in Neural Information Processing Systems, pp. 1090–1098 (2010)

    Google Scholar 

  9. Sermanet, P., Kavukcuoglu, K., Chintala, S., LeCun, Y.: Pedestrian detection with unsupervised multi-stage feature learning. arXiv preprint arXiv:1212.0142 (2012)

    Google Scholar 

  10. Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving cameras. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1219–1225. IEEE (2009)

    Google Scholar 

  11. Lee, B., Hedley, M.: Background estimation for video surveillance

    Google Scholar 

  12. McFarlane, N., Schofield, C.: Segmentation and tracking of piglets in images. Machine Vision and Applications 8(3), 187–193 (1995), cited By (since 1996)163

    Google Scholar 

  13. Zheng, J., Wang, Y., Nihan, N., Hallenbeck, M.: Extracting roadway background image: Mode-based approach. Transportation Research Record (1944), 82–88 (2006), cited By (since 1996)14

    Google Scholar 

  14. Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 780–785 (1997)

    Article  Google Scholar 

  15. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking.  2, 246–252 (1999), cited By (since 1996)1864

    Google Scholar 

  16. KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Video-Based Surveillance Systems, pp. 135–144. Springer (2002)

    Google Scholar 

  17. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(4), 657–662 (2006)

    Article  Google Scholar 

  19. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, vol. 1, p. 4 (2012)

    Google Scholar 

  21. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

    Google Scholar 

  22. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2528–2535. IEEE (2010)

    Google Scholar 

  23. Jia, Y.: Caffe: An open source convolutional architecture for fast feature embedding (2013), http://caffe.berkeleyvision.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Xiao, S., Ge, S.S., Yan, S. (2014). Adaptive Object Learning for Robot Carinet. In: Beetz, M., Johnston, B., Williams, MA. (eds) Social Robotics. ICSR 2014. Lecture Notes in Computer Science(), vol 8755. Springer, Cham. https://doi.org/10.1007/978-3-319-11973-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11973-1_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11972-4

  • Online ISBN: 978-3-319-11973-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics