Skip to main content

Anomaly Detection in Streaming Time Series Based on Bounding Boxes

  • Conference paper
Similarity Search and Applications (SISAP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8821))

Included in the following conference series:

Abstract

Anomaly detection in time series has been studied extensively by the scientific community utilizing a wide range of applications. One specific technique that obtains very good results is “HOT SAX”, because it only requires a parameter the length of the subsequence, and it does not need a training model for detecting anomalies. However, its disadvantage is that it requires the use of a normalized Euclidean distance, which in turn requires setting a parameter ε to avoid detecting meaningless patterns (noise in the signal). Setting an appropriate ε requires an analysis of the domain of the values from the time series, which implies normalizing all subsequences before performing the detection. We propose an approach for anomaly detection based on bounding boxes, which does not require normalizing the subsequences, thus it does not need to set ε. Thereby, the proposed technique can be used directly for online detection, without any a priori knowledge and using the non-normalized Euclidean distance. Moreover, we show that our algorithm computes less CPU runtime in finding the anomaly than HOT SAX in normalized scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Web Page for Time Series for Weather Data of National Oceanic and Atmospheric Administration in USA, http://www.esrl.noaa.gov/psd/boulder/

  2. Ahmed, T., Coates, M., Lakhina, A.: Multivariate online anomaly detection using kernel recursive least squares. In: IEEE INFOCOM, pp. 625–633 (2007)

    Google Scholar 

  3. Ang, C.-H., Tan, T.: New linear node splitting algorithm for r-trees. In: Scholl, M.O., Voisard, A. (eds.) SSD 1997. LNCS, vol. 1262, pp. 337–349. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Assent, I., Krieger, R., Afschari, F., Seidl, T.: The TS-tree: Efficient time series search and retrieval. In: Proc. 11th Intl. Conf. on Extending Database Technology: Advances in Database Technology, pp. 252–263. ACM (2008)

    Google Scholar 

  5. Bu, Y., Wing Leung, O.T., Chee Fu, A.W., Keogh, E.J., Pei, J., Meshkin, S.: WAT: Finding top-k discords in time series database. In: SIAM Intl. Conf. on Data Mining, pp. 449–454 (2007)

    Google Scholar 

  6. Buu, H.T.Q., Anh, D.T.: Time series discord discovery based on iSAX symbolic representation. In: 2011 Third Intl. Conf. on Knowledge and Systems Engineering (KSE), pp. 11–18 (2011)

    Google Scholar 

  7. Chan, P.K., Mahoney, M.V.: Modeling multiple time series for anomaly detection. In: IEEE Intl. Conf. on Data Mining, pp. 90–97 (2005)

    Google Scholar 

  8. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41, 1–58 (2009)

    Article  Google Scholar 

  9. Chaovalit, P., Gangopadhyay, A., Karabatis, G., Chen, Z.: Discrete wavelet transform-based time series analysis and mining. ACM Comput. Surv. 43, 1–37 (2011)

    Article  Google Scholar 

  10. Chis, M., Banerjee, S., Hassanien, A.: Clustering time series data: An evolutionary approach. In: Abraham, A., Hassanien, A.-E., de Carvalho, A.P.D.L.F., Snášel, V. (eds.) Foundations of Computational, Intelligence Volume 6. SCI, vol. 206, pp. 193–207. Springer, Heidelberg (2009)

    Google Scholar 

  11. Chuah, M.C., Fu, F.: ECG anomaly detection via time series analysis. In: Thulasiraman, P., He, X., Xu, T.L., Denko, M.K., Thulasiram, R.K., Yang, L.T. (eds.) ISPA Workshops 2007. LNCS, vol. 4743, pp. 123–135. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Gabarda, S., Cristóbal, G.: Detection of events in seismic time series by time-frequency methods. IET Signal Processing 4(4), 413–420 (2010)

    Article  Google Scholar 

  13. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for rapid interference detection. In: Proc. 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 171–180. ACM (1996)

    Google Scholar 

  14. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Intl. Conf. on Management of Data, pp. 47–57 (1984)

    Google Scholar 

  15. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowledge and Information Systems 3(3), 263–286 (2001)

    Article  MATH  Google Scholar 

  16. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005)

    Article  Google Scholar 

  17. Keogh, E., Xi, X., Wei, L., Ratanamahatana, C.: The UCR Time Series Classification/Clustering Homepage (2011)

    Google Scholar 

  18. Keogh, E.J., Lin, J., Fu, A.W.: HOT SAX: Efficiently finding the most unusual time series subsequence. In: IEEE Intl. Conf. on Data Mining, pp. 226–233 (2005)

    Google Scholar 

  19. Keogh, E.J., Lin, J., Hee Lee, S., Herle, H.V.: Finding the most unusual time series subsequence: algorithms and applications. Knowledge and Information Systems 11, 1–27 (2007)

    Article  Google Scholar 

  20. Khanh, N.D.K., Anh, D.T.: Time series discord discovery using WAT algorithm and iSAX representation. In: Proc. Third Symposium on Information and Communication Technology, pp. 207–213. ACM (2012)

    Google Scholar 

  21. Liao, T.W.: Clustering of time series data: a survey. Pattern Recognition 38(11), 1857–1874 (2005)

    Article  MATH  Google Scholar 

  22. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proc. 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11 (2003)

    Google Scholar 

  23. Lin, J., Keogh, E., Truppel, W.: Clustering of streaming time series is meaningless. In: Proc. 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 56–65. ACM (2003)

    Google Scholar 

  24. Lin, J., Keogh, E.J., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery 15, 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  25. Shieh, J., Keogh, E.: iSAX: indexing and mining terabyte sized time series. In: Proc. 14th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pp. 623–631. ACM (2008)

    Google Scholar 

  26. Trenberth, K.E., Hoar, T.J.: The 1990-1995 El Niño-Southern oscillation event: Longest on record. Geophysical Research Letters 23(1), 57–60 (1996)

    Article  Google Scholar 

  27. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multi-dimensional time-series with support for multiple distance measures. In: Proc. Ninth ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pp. 216–225. ACM (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sanchez, H., Bustos, B. (2014). Anomaly Detection in Streaming Time Series Based on Bounding Boxes. In: Traina, A.J.M., Traina, C., Cordeiro, R.L.F. (eds) Similarity Search and Applications. SISAP 2014. Lecture Notes in Computer Science, vol 8821. Springer, Cham. https://doi.org/10.1007/978-3-319-11988-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11988-5_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11987-8

  • Online ISBN: 978-3-319-11988-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics