Skip to main content

Low-Rank Online Metric Learning

  • Chapter
  • First Online:
Low-Rank and Sparse Modeling for Visual Analysis
  • 1952 Accesses

Abstract

Image classification is a key problem in computer vision community. Most of the conventional visual recognition systems usually train an image classifier in an offline batch mode with all training data provided in advance. Unfortunately in many practical applications, usually only a small amount of training samples are available in the initialization stage and many more would come sequentially during the online process. Because the image data characteristics could dramatically change over time, it is important for the classifier to adapt to the new data incrementally. In this chapter, we present an online metric learning model to address the online image classification/scene recognition problem via adaptive similarity measurement. Given a number of labeled samples followed by a sequential input of unseen testing samples, the similarity metric is learned to maximize the margin of the distance among different classes of samples. By considering the low-rank constraint, our online metric learning model not only provides competitive performance compared with the state-of-the-art methods, but also guarantees to converge. A bi-linear graph is also applied to model the pair-wise similarity, and an unseen sample is labeled depending on the graph-based label propagation, while the model can also self-update using the new samples that are more confident labeled. With the ability of online learning, our methodology can well handle the large-scale streaming video data with the ability of incremental self-update. We also demonstrate that the low-rank property widely exists in natural data. In the experiments, we evaluate our model to online scene categorization and experiments on various benchmark datasets and comparisons with state-of-the-art methods demonstrate the effectiveness and efficiency of our algorithm.

\(\copyright \) [2013] IEEE. Reprinted, with permission, from Yang Cong, Ji Liu, Junsong Yuan, Jiebo Luo “Self-supervised online metric learning with low rank constraint for scene categorization”, IEEE Transactions on Image Processing, Vol. 22, No. 8, August 2013, pp. 3179–3191.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Perronnin, Z. Akata, Z. Harchaoui, C. Schmid, Towards good practice in large-scale learning for image classification, in CVPR IEEE, pp. 3482–3489 (2012)

    Google Scholar 

  2. S. McCann, D.G. Lowe, Local naive bayes nearest neighbor for image classification, in CVPR IEEE, pp. 3650–3656 (2012)

    Google Scholar 

  3. B. Fernando, E. Fromont, T. Tuytelaars, Mining mid-level features for image classification. Int. J. Comput. Vision, pp. 1–18 (2014)

    Google Scholar 

  4. J. Sánchez, F. Perronnin, T. Mensink, J. Verbeek, Image classification with the fisher vector: Theory and practice. Int. J. Comput. Vision 105(3), 222–245 (2013)

    Article  MATH  Google Scholar 

  5. O. Russakovsky, Y. Lin, K. Yu, L. Fei-Fei, Object-centric spatial pooling for image classification, in Computer Vision-ECCV. (Springer), 1–15 (2012)

    Google Scholar 

  6. K. Simonyan, A. Vedaldi, A. Zisserman, Deep fisher networks for large-scale image classification, in Advances in Neural Information Processing Systems, pp. 163–171 (2013)

    Google Scholar 

  7. H. Kekre, S. Thepade, R. K. K. Das, S. Ghosh, Image classification using block truncation coding with assorted color spaces. Int. J. Comput. Appl., vol. 44 (2012)

    Google Scholar 

  8. H. Grabner, H. Bischof, On-line boosting and vision, in CVPR, vol. 1, pp. 260–267 (2006)

    Google Scholar 

  9. G. Chechik, V. Sharma, U. Shalit, S. Bengio, An online algorithm for large scale image similarity learning. NIPS 21, 306–314 (2009)

    Google Scholar 

  10. F. Wang, C. Yuan, X. Xu, P. van Beek, Supervised and semi-supervised online boosting tree for industrial machine vision application, in Proceedings of the Fifth International Workshop on Knowledge Discovery from Sensor Data. ACM, pp. 43–51 (2011)

    Google Scholar 

  11. G. Cauwenberghs, T. Poggio, Incremental and decremental support vector machine learning, in NIPS, pp. 409–415 (2001)

    Google Scholar 

  12. B. Liu, S. Mahadevan, J. Liu, Regularized off-policy td-learning, in NIPS (2012)

    Google Scholar 

  13. Y. Cong, J. Yuan, Y. Tang, Object tracking via online metric learning, in ICIP, pp. 417–420 (2012)

    Google Scholar 

  14. Y. Cong, J. Liu, J. Yuan, J. Luo, Self-supervised Online Metric Learning with Low Rank Constraint for Scene Categorization. IEEE Trans. Image Process. 22(8), 3179–3191 (2013)

    Article  Google Scholar 

  15. K. van de Sande, T. Gevers, C. Snoek, Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010)

    Article  Google Scholar 

  16. M. Szummer, R. Picard, Indoor-outdoor image classification, in IEEE International Workshop on Content-Based Access of Image and Video Database (1998), pp. 42–51

    Google Scholar 

  17. D. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  18. A.E. Abdel-Hakim, A.A. Farag, Csift: a sift descriptor with color invariant characteristics, CVPR, vol. 2006 (IEEE, 2006), pp. 1978–1983

    Google Scholar 

  19. A. Bosch, A. Zisserman, X. Muoz, Scene classification using a hybrid generative/discriminative approach. Pattern Anal. Mach. Intell, IEEE Trans. 30(4), 712–727 (2008)

    Article  Google Scholar 

  20. M. Brown, S. Susstrunk, Multi-spectral sift for scene category recognition, in CVPR (IEEE, 2011), pp. 177–184 (2011)

    Google Scholar 

  21. J. Van De Weijer, T. Gevers, A.D. Bagdanov, Boosting color saliency in image feature detection. Pattern Anal. Mach. Intell, IEEE Trans. 28(1), 150–156 (2006)

    Article  Google Scholar 

  22. S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in CVPR, vol. 2 (2006)

    Google Scholar 

  23. J.V. Gemert, J. Geusebroek, C. Veenman, A. Smeulders, Kernel codebooks for scene categorization, in ECCV, pp. 696–709 (2008)

    Google Scholar 

  24. A. Quattoni, A. Torralba, Recognizing indoor scenes, in CVPR (2009)

    Google Scholar 

  25. J. Wu, H. Christensen, J. Rehg, Visual place categorization: Problem, dataset, and algorithm, in IROS (2009)

    Google Scholar 

  26. J. Wu, J. Rehg, CENTRIST: A visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1489–1501 (2011)

    Article  Google Scholar 

  27. Y. Xiao, J. Wu, J. Yuan, mcentrist: A multi-channel feature generation mechanism for scene categorization (2014)

    Google Scholar 

  28. Y. Cong, J. Yuan, J. Luo, Towards scalable summarization of consumer videos via sparse dictionary selection. Multimedia, IEEE Trans. 14(1), 66–75 (2012)

    Article  Google Scholar 

  29. L. Li, L. Fei-Fei, What, where and who? Classifying events by scene and object recognition, in ICCV, vol. 2(4), 8 (2007)

    Google Scholar 

  30. D. Walther, E. Caddigan, L. Fei-Fei, D. Beck, Natural scene categories revealed in distributed patterns of activity in the human brain. J. Neurosci. 29(34), 10573 (2009)

    Article  Google Scholar 

  31. L. Li, R. Socher, L. Fei-Fei, Towards total scene understanding: classification, annotation and segmentation in an automatic framework, in CVPR, pp. 2036–2043 (2009)

    Google Scholar 

  32. J. Liu, M. Shah, Scene modeling using co-clustering, in ICCV (2007)

    Google Scholar 

  33. P. Quelhas, F. Monay, J. Odobez, D. Gatica-Perez, T. Tuytelaars, A thousand words in a scene. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1575–1589 (2007)

    Article  Google Scholar 

  34. A. Bosch, A. Zisserman, M. Pujol, Scene classification using a hybrid generative/discriminative approach, IEEE transactions on pattern analysis and machine intelligence, vol. 30 (2008)

    Google Scholar 

  35. J. Kivinen, E. Sudderth, M. Jordan, Learning multiscale representations of natural scenes using Dirichlet processes, in ICCV (2007)

    Google Scholar 

  36. J. Vogel, B. Schiele, Semantic modeling of natural scenes for content-based image retrieval. Int. J. Comput. Vision 72(2), 133–157 (2007)

    Article  Google Scholar 

  37. P. Utgoff, N. Berkman, J. Clouse, Decision tree induction based on efficient tree restructuring. Mach. Learn 29(1), 5–44 (1997)

    Article  MATH  Google Scholar 

  38. S. Avidan, Ensemble tracking, in CVPR, vol. 2, pp. 494–501 (2005)

    Google Scholar 

  39. X. Liu, T. Yu, Gradient feature selection for online boosting, in ICCV, pp. 1–8 (2007)

    Google Scholar 

  40. N. Oza, S. Russell, Online bagging and boosting, in Artif. Intell. Stat (2001)

    Google Scholar 

  41. E. Lughofer, On-line evolving image classifiers and their application to surface inspection. Image Vis. Comput. 28(7), 1065–1079 (2010)

    Article  Google Scholar 

  42. F. Gayubo, J. Gonzalez, E.D.L. Fuente, F. Miguel, J. Peran, On-line machine vision system for detect split defects in sheet-metal forming processes, in ICPR, vol. 1, pp. 723–726 (2006)

    Google Scholar 

  43. O. Camoglu, T. Yu, L. Bertelli, D. Vu, V. Muralidharan, S. Gokturk, An efficient fashion-driven learning approach to model user preferences in on-line shopping scenarios, in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 28–34 (2010)

    Google Scholar 

  44. K. Weinberger, L. Saul, Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

  45. P. Jain, B. Kulis, I. Dhillon, K. Grauman, Online metric learning and fast similarity search, in NIPS, pp. 761–768 (2008)

    Google Scholar 

  46. A. Globerson, S. Roweis., Metric learning by collapsing classes, in NIPS (2006)

    Google Scholar 

  47. K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, Y. Singer, Online passive-aggressive algorithms. J. Mach. Learn. Res. 7, 585 (2006)

    MathSciNet  Google Scholar 

  48. G. Chechik, V. Sharma, U. Shalit, S. Bengio, Large scale online learning of image similarity through ranking. J. Mach. Learn. Res. 11, 1109–1135 (2010)

    MathSciNet  MATH  Google Scholar 

  49. H. Cheng, Z. Liu, J. Yang, Sparsity Induced Similarity Measure for Label Propagation, in ICCV (2009)

    Google Scholar 

  50. K.Weinberger, J. Blitzer, L. Saul, Distance metric learning for large margin nearest neighbor classification, in NIPS (2006)

    Google Scholar 

  51. http://categorizingplaces.com/dataset.html

  52. G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset(2007)

    Google Scholar 

  53. N. Jacobson, Y. Freund, T. Nguyen, An online learning approach to occlusion boundary detection. Image Proc. IEEE Trans. 99, 1–1 (2010)

    Google Scholar 

  54. Y. Wu, J. Cheng, J. Wang, H. Lu, J. Wang, H. Ling, E. Blasch, L. Bai, Real-time probabilistic covariance tracking with efficient model update. Image Proc. IEEE Trans. 21(5), 2824–2837 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Natural Science Foundation of China (61105013, 61375014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Cong .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Theorem 1

Proof

Since \(W\) is a PSD matrix, it can be decomposed as \(W=UU^T\) where \(U\in \mathbb {R}^{d\times d}\). Consider the following equation \(X^TV = X^TU\) with respect to \(V\). Define \(B\in \mathbb {R}^{d\times (d-r)}\) with linear dependent columns \(B_{.i}\)’s in the null space of \(X^T\). One can obtain the solution as \(V=U+BZ\) where \(Z\in \mathbb {R}^{(d-r)\times d}\). Split \(U\) and \(B\) into two parts \(U={U1 \atopwithdelims ()U2} \) and \(B={B1\atopwithdelims ()B2}\) where \(U1\in \mathbb {R}^{(d-r)\times d}\), \(U2\in \mathbb {R}^{r\times d}\), \(B1\in \mathbb {R}^{(d-r)\times (d-r)}\), and \(B2\in \mathbb {R}^{r\times r}\). Define \(Z=-B1^{-1}U1\). One verifies that \(V={0 \atopwithdelims ()U2-B2B1^{-1}U1} \) and its rank is at most \(r\). Since \(X^TU=X^TV\), we obtain \(X^TWX=X^TQX\) and the rank of \(Q\) is r by letting \(Q=VV^T\). \(\blacksquare \)

1.2 Proof of Theorem 2

Proof

Decompose \(C\) into the symmetric space and the skew symmetric space, i.e., \(C = C_y + C_k\) where \(C_y = {1 \over 2}(C+C^T)\) and \( C_k = {1\over 2}(C-C^T)\). Note that \(\langle C_y, C_k\rangle = 0\). Consider \(W\succeq 0\) (\(W\) must be symmetric) in the following

$$\begin{aligned} \Vert W-C\Vert ^2_F&=\Vert W-C_y-C_k\Vert ^2_F \nonumber \\&=\Vert W-C_y\Vert ^2_F + \Vert C_k\Vert ^2_F + 2\langle W-C_y, C_k \rangle \nonumber \\&=\Vert W-C_y\Vert ^2_F + \Vert C_k\Vert ^2_F. \end{aligned}$$
(26)

Thus, we obtain \(prox_{\gamma P,\Omega }(C)=prox_{\gamma P,\Omega }(C_y)\).

$$\begin{aligned}&\min _{W\succeq 0}~{1\over 2}\Vert W-C_y\Vert ^2_F + \gamma \Vert W\Vert _* \nonumber \\&\quad =\min _{W\succeq 0}~{1\over 2}\Vert W-C_y\Vert ^2_F + \max _{\Vert Z\Vert \le \gamma , Z\in S\mathbb {R}^{d\times d}} \langle W,Z \rangle \nonumber \\&\quad =\max _{\Vert Z\Vert \le \gamma , Z\in S\mathbb {R}^{d\times d}}\min _{W\succeq 0}~{1\over 2}\Vert W-C_y\Vert ^2_F + \langle W,Z \rangle \nonumber \\&\quad =\max _{\Vert Z\Vert \le \gamma , Z\in S\mathbb {R}^{d\times d}}\min _{W\succeq 0}~{1\over 2}\Vert W-C_y+Z\Vert ^2_F + \langle C_y,Z \rangle - {1\over 2}\Vert Z\Vert ^2_F\nonumber \\&\quad =\max _{\Vert Z\Vert \le \gamma , Z\in S\mathbb {R}^{d\times d}}~{1\over 2}\Vert (C_y-Z)^-\Vert ^2_F + \langle C_y,Z \rangle - {1\over 2}\Vert Z\Vert ^2_F \end{aligned}$$
(27)

The first equality uses the dual form of the trace norm of a PSD matrix, where \(S\mathbb {R}\) denotes the symmetric space. The second equality is due to Von Neumann theorem. The last equality uses the result that the projection from a symmetric matrix \(X\) onto the SDP cone is \(X^+\), which also implies that \(W=(C_y-Z)^+\).

It follows that

$$\begin{aligned}&\max _{\Vert Z\Vert \le \gamma , Z\in S\mathbb {R}^{d\times d}}~{1\over 2}\Vert (C_y+Z)^-\Vert ^2_F + \langle C_y,Z \rangle - {1\over 2}\Vert Z\Vert ^2_F\nonumber \\&\quad =\max _{\Vert Z\Vert \le \gamma , Z\in S\mathbb {R}^{d\times d}}~{1\over 2}\Vert (C_y-Z)^-\Vert ^2_F - {1\over 2}\Vert C_y-Z\Vert ^2_F + {1\over 2}\Vert C_y\Vert ^2_F\nonumber \\&\quad =\max _{\Vert Z\Vert \le \gamma , Z\in S\mathbb {R}^{d\times d}}~-{1\over 2}\Vert (C_y-Z)^+\Vert ^2_F + {1\over 2}\Vert C_y\Vert ^2_F \end{aligned}$$
(28)

From the last formulation, we obtain the optimal \(Z^*=\mathcal {T}_\gamma (C_y)\) and the optimal \(W^*=(C_y-Z^*)^+=(C_y-\mathcal {T}_\gamma (C_y))^+=\mathcal {D}_\gamma (C_y)^+=D_\gamma (C_y)\). It completes our proof. \(\blacksquare \)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cong, Y., Liu, J., Yuan, J., Luo, J. (2014). Low-Rank Online Metric Learning. In: Fu, Y. (eds) Low-Rank and Sparse Modeling for Visual Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-12000-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12000-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11999-1

  • Online ISBN: 978-3-319-12000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics