Abstract
When combining classifiers, we aggregate the output of different machine learning methods, and base our decision on the aggregated probability values instead of the individual ones. In the phoneme classification task of speech recognition, small excerpts of speech need to be identified as one of the pre-defined phonemes; but the probability value assigned to each possible phoneme also hold valuable information. This is why, when combining classifier output in this task, we must use a combination scheme which can aggregate the output probability values of the basic classifiers in a robust way. We tested the representative uninorms for this task, and were able to significantly outperform all the basic classifiers tested.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benbouzid, D., Busa-Fekete, R., Casagrande, N., Collin, F.D., Kégl, B.: MultiBoost: a multi-purpose boosting package. Journal of Machine Learning Research 13, 549–553 (2012)
Bi, Y., Bell, D.A., Wang, H., Guo, G., Greer, K.: Combining multiple classifiers using Dempster’s rule of combination for text categorization. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131, pp. 127–138. Springer, Heidelberg (2004)
Bishop, C.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)
Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 1–27 (2011)
Dombi, J.: Basic concepts for a theory of evaluation: the agregative operator. European Journal of Operational Research 10, 282–293 (1982)
Dombi, J.: A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets and Systems 8, 149–163 (1982)
Dombi, J.: Towards a general class of operators for fuzzy systems. IEEE Transaction on Fuzzy Systems 16(2), 477–484 (2008)
Dombi, J.: Bayes theorem, uninorms and aggregating expert opinions. In: Bustince, H., Fernandez, J., Mesiar, R., Calvo, T. (eds.) Aggregation Functions in Theory and in Practise. AISC, vol. 228, pp. 281–291. Springer, Heidelberg (2013)
Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley & Sons, New York (1973)
Felföldi, L., Kocsor, A., Tóth, L.: Classifier combination in speech recognition. Periodica Polytechnica, Electrical Engineering 47(1), 125–140 (2003)
Fodor, J., Yager, R.R., Rybalov, A.: Structure of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5(4), 411–427 (1997)
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: Proceedings of AISTATS, pp. 315–323 (2011)
Gosztolya, G., Dombi, J., Kocsor, A.: Applying the Generalized Dombi Operator family to the speech recognition task. Journal of Computing and Information Technology 17(3), 285–293 (2009)
Gosztolya, G., Kocsor, A.: Using triangular norms in a segment-based automatic speech recognition system. International Journal of Information Technology and Intelligent Computing (IT & IC) (IEEE) 1(3), 487–498 (2006)
Kocsor, A., Gosztolya, G.: Application of full reinforcement aggregation operators in speech recognition. In: Proceedings of the 2006 Conference of Recent Advances in Soft Computing (RASC), Canterbury, UK (2006)
Lamel, L., Kassel, R., Seneff, S.: Speech database development: Design and analysis of the acoustic-phonetic corpus. In: DARPA Speech Recognition Workshop, pp. 121–124 (1986)
Plessis, B., Sicsu, A., Heutte, L., Menu, E., Lecolinet, E., Debon, O., Moreau, J.V.: A multi-classifier combination strategy for the recognition of handwritten cursive words. In: Proceedings of ICDAR, pp. 642–645 (1993)
Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37(3), 297–336 (1999)
Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)
Tóth, L.: Convolutional deep rectifier neural nets for phone recognition. In: Proceedings of Interspeech, Lyon, France, pp. 1722–1726 (2013)
Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80(1), 111–120 (1996)
Yu, K., Jiang, X., Bunke, H.: Lipreading: A classifier combination approach. Pattern Recognition Letters 18(11-13), 1421–1426 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Gosztolya, G., Dombi, J. (2014). Applying Representative Uninorms for Phonetic Classifier Combination. In: Torra, V., Narukawa, Y., Endo, Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2014. Lecture Notes in Computer Science(), vol 8825. Springer, Cham. https://doi.org/10.1007/978-3-319-12054-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-12054-6_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12053-9
Online ISBN: 978-3-319-12054-6
eBook Packages: Computer ScienceComputer Science (R0)