Skip to main content

Applying Representative Uninorms for Phonetic Classifier Combination

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8825))

Abstract

When combining classifiers, we aggregate the output of different machine learning methods, and base our decision on the aggregated probability values instead of the individual ones. In the phoneme classification task of speech recognition, small excerpts of speech need to be identified as one of the pre-defined phonemes; but the probability value assigned to each possible phoneme also hold valuable information. This is why, when combining classifier output in this task, we must use a combination scheme which can aggregate the output probability values of the basic classifiers in a robust way. We tested the representative uninorms for this task, and were able to significantly outperform all the basic classifiers tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benbouzid, D., Busa-Fekete, R., Casagrande, N., Collin, F.D., Kégl, B.: MultiBoost: a multi-purpose boosting package. Journal of Machine Learning Research 13, 549–553 (2012)

    MATH  Google Scholar 

  2. Bi, Y., Bell, D.A., Wang, H., Guo, G., Greer, K.: Combining multiple classifiers using Dempster’s rule of combination for text categorization. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131, pp. 127–138. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Bishop, C.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)

    Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 1–27 (2011)

    Article  Google Scholar 

  5. Dombi, J.: Basic concepts for a theory of evaluation: the agregative operator. European Journal of Operational Research 10, 282–293 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dombi, J.: A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets and Systems 8, 149–163 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dombi, J.: Towards a general class of operators for fuzzy systems. IEEE Transaction on Fuzzy Systems 16(2), 477–484 (2008)

    Article  Google Scholar 

  8. Dombi, J.: Bayes theorem, uninorms and aggregating expert opinions. In: Bustince, H., Fernandez, J., Mesiar, R., Calvo, T. (eds.) Aggregation Functions in Theory and in Practise. AISC, vol. 228, pp. 281–291. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley & Sons, New York (1973)

    MATH  Google Scholar 

  10. Felföldi, L., Kocsor, A., Tóth, L.: Classifier combination in speech recognition. Periodica Polytechnica, Electrical Engineering 47(1), 125–140 (2003)

    Google Scholar 

  11. Fodor, J., Yager, R.R., Rybalov, A.: Structure of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5(4), 411–427 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: Proceedings of AISTATS, pp. 315–323 (2011)

    Google Scholar 

  13. Gosztolya, G., Dombi, J., Kocsor, A.: Applying the Generalized Dombi Operator family to the speech recognition task. Journal of Computing and Information Technology 17(3), 285–293 (2009)

    Google Scholar 

  14. Gosztolya, G., Kocsor, A.: Using triangular norms in a segment-based automatic speech recognition system. International Journal of Information Technology and Intelligent Computing (IT & IC) (IEEE) 1(3), 487–498 (2006)

    Google Scholar 

  15. Kocsor, A., Gosztolya, G.: Application of full reinforcement aggregation operators in speech recognition. In: Proceedings of the 2006 Conference of Recent Advances in Soft Computing (RASC), Canterbury, UK (2006)

    Google Scholar 

  16. Lamel, L., Kassel, R., Seneff, S.: Speech database development: Design and analysis of the acoustic-phonetic corpus. In: DARPA Speech Recognition Workshop, pp. 121–124 (1986)

    Google Scholar 

  17. Plessis, B., Sicsu, A., Heutte, L., Menu, E., Lecolinet, E., Debon, O., Moreau, J.V.: A multi-classifier combination strategy for the recognition of handwritten cursive words. In: Proceedings of ICDAR, pp. 642–645 (1993)

    Google Scholar 

  18. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37(3), 297–336 (1999)

    Article  MATH  Google Scholar 

  19. Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  20. Tóth, L.: Convolutional deep rectifier neural nets for phone recognition. In: Proceedings of Interspeech, Lyon, France, pp. 1722–1726 (2013)

    Google Scholar 

  21. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80(1), 111–120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yu, K., Jiang, X., Bunke, H.: Lipreading: A classifier combination approach. Pattern Recognition Letters 18(11-13), 1421–1426 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gosztolya, G., Dombi, J. (2014). Applying Representative Uninorms for Phonetic Classifier Combination. In: Torra, V., Narukawa, Y., Endo, Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2014. Lecture Notes in Computer Science(), vol 8825. Springer, Cham. https://doi.org/10.1007/978-3-319-12054-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12054-6_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12053-9

  • Online ISBN: 978-3-319-12054-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics