Abstract
The first output bit of TRIVIUM can be considered to be a boolean function of 80 key and 80 IV variables. Choose n (n ≤ 30) of the key variables and set the other variables to constant values. This gives an n-variable boolean function. In this work, we experimentally find examples of such boolean functions which deviate from a uniform random n-variable boolean function in a statistically significant manner. This improves upon the previously reported experimental ‘non-randomness’ result using the cube testing methodology by Aumasson et al in 2009 for TRIVIUM restricted to 885 rounds. In contrast, we work with full TRIVIUM and instead of using the cube methodology we directly find the algebraic normal form of the restricted version of the first output bit of TRIVIUM. We note, however, that our work does not indicate any weakness of TRIVIUM. On the other hand, the kind of experiments that we conduct for TRIVIUM can also be conducted for other ciphers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube Testers and Key Recovery Attacks on Reduced-Round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)
De Cannière, C., Preneel, B.: Trivium-specifications. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/030 (2005)
Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009)
Englund, H., Johansson, T., Sönmez Turan, M.: A Framework for Chosen IV Statistical Analysis of Stream Ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007)
Filiol, É.: A New Statistical Testing for Symmetric Ciphers and Hash Functions. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 342–353. Springer, Heidelberg (2002)
Fischer, S., Khazaei, S., Meier, W.: Chosen IV Statistical Analysis for Key Recovery Attacks on Stream Ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 236–245. Springer, Heidelberg (2008)
Fouque, P.-A., Vannet, T.: Improving Key Recovery to 784 and 799 Rounds of Trivium Using Optimized Cube Attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 502–517. Springer, Heidelberg (2013)
Joux, A.: Algorithmic cryptanalysis. CRC Press (2009)
O’Neil, S.: Algebraic Structure Defectoscopy. In: Special ECRYPT Workshop–Tools for Cryptanalysis (2007)
Raddum, H.: Cryptanalytic Results on Trivium. Technical Report 2006/039, eSTREAM, ECRYPT Stream Cipher Project, Report (2006), http://www.ecrypt.eu.org/stream/papersdir/2006/039.ps
Saarinen, M.-J.O.: Chosen-IV Statistical Attacks on eSTREAM Stream Ciphers. In: Proc. Stream Ciphers Revisited SASC (2006)
Samajder, S., Sarkar, P.: Fast Multiplication of the Algebraic Normal Forms of Two Boolean Functions. In: Budaghyan, L., Helleseth, T., Parker, M.G. (eds.) WCC 2013, pp. 373–385 (2013), http://www.selmer.uib.no/WCC2013/pdfs/Samajder.pdf
Samajder, S., Sarkar, P.: Some randomness experiments on trivium. Cryptology ePrint Archive, Report 2014/211 (2014), http://eprint.iacr.org/
Turan, M.S., Kara, O.: Linear Approximations for 2-round TRIVIUM. In: Proc. First International Conference on Security of Information and Networks (SIN 2007), pp. 96–105 (2007)
Vielhaber, M.: Breaking One.Fivium By AIDA: An Algebraic IV Differential Attack. Technical Report 2007/413, Cryptology ePrint Archive, Report (2007), http://eprint.iacr.org/2007/413
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Samajder, S., Sarkar, P. (2014). Some Randomness Experiments on TRIVIUM. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2014. Lecture Notes in Computer Science, vol 8804. Springer, Cham. https://doi.org/10.1007/978-3-319-12060-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-12060-7_15
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12059-1
Online ISBN: 978-3-319-12060-7
eBook Packages: Computer ScienceComputer Science (R0)