Skip to main content

Randomized Batch Verification of Standard ECDSA Signatures

  • Conference paper
Security, Privacy, and Applied Cryptography Engineering (SPACE 2014)

Abstract

In AfricaCrypt 2012, several algorithms are proposed for the batch verification of ECDSA signatures. In this paper, we propose three randomization methods for these batch-verification algorithms. Our first proposal is based on Montgomery ladders, and the second on computing square-roots in the underlying field. Both these techniques use numeric arithmetic only. Our third proposal exploits symbolic computations leading to a seminumeric algorithm. We theoretically and experimentally establish that for standard ECDSA signatures, our seminumeric randomization algorithm in tandem with the batch-verification algorithm S2′ gives the best speedup over individual verification. If each ECDSA signature contains an extra bit to uniquely identify the correct y-coordinate of the elliptic-curve point appearing in the signature, then the second numeric randomization algorithm followed by the naive batch-verification algorithm N′ yields the best performance gains. We detail our study for NIST prime and Koblitz curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karati, S., Das, A., Roychowdhury, D., Bellur, B., Bhattacharya, D., Iyer, A.: Batch verification of ECDSA signatures. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 1–18. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.-J.: Faster batch forgery identification. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 454–473. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Naccache, D., M’Raïhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be improved?: Complexity trade-offs with the digital signature standard. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  4. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S.: Accelerated verification of ECDSA signatures. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Cheon, J.H., Yi, J.H.: Fast batch verification of multiple signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 442–457. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Montgomery, P.L.: Speeding up Pollard and elliptic curve methods of factorization. In: Mathematics of Computation, vol. 48(177), pp. 243–264 (1987)

    Google Scholar 

  7. Joye, M.: Security analysis of RSA-type cryptosystems. Phd thesis, UCL Crypto Group, Belgium (1997)

    Google Scholar 

  8. NIST: Recommended elliptic curves for federal government use (1999), http://csrc.nist.gov/encryption

  9. Montgomery, P.L.: Evaluating recurrences of form X m + n  = f(X m ,X n ,X m − n ) via Lucas chains. Microsoft research article, 582 (1992)

    Google Scholar 

  10. Stam, M.: On Montgomery-like representations for elliptic curves over GF(2k). In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 240–253. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Stam, M.: Speeding up subgroup cryptosystems. PhD thesis, Technische Universiteit Eindhoven (2003)

    Google Scholar 

  12. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Fischer, W., Giraud, C., Knudsen, E.W., Seifert, J.P.: Parallel scalar multiplication on general elliptic curves over F p hedged against non-differential side-channel attacks. IACR Cryptology ePrint Archive 2002/007 (2002)

    Google Scholar 

  16. Bernstein, D.J., Lange, T.: Explicit-Formulas Database (2007), http://www.hyperelliptic.org/EFD/index.html

  17. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography, 2nd edn. Chapman & Hall/CRC (2012)

    Google Scholar 

  18. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer-Verlag New York, Inc., Secaucus (2003)

    Google Scholar 

  19. PARI Group: PARI/GP home (2008), http://pari.math.u-bordeaux.fr/

  20. Lange, T.: A note on López-Dahab coordinates. IACR Cryptology ePrint Archive 2004/323 (2004)

    Google Scholar 

  21. Solinas, J.A.: Improved algorithms for arithmetic on anomalous binary curves. Technical report, Originally presented in Advances in Cryptography, Crypto 1997 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Karati, S., Das, A., Roychoudhury, D. (2014). Randomized Batch Verification of Standard ECDSA Signatures. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2014. Lecture Notes in Computer Science, vol 8804. Springer, Cham. https://doi.org/10.1007/978-3-319-12060-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12060-7_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12059-1

  • Online ISBN: 978-3-319-12060-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics