Abstract
Semi-bent and hyper-bent funcitons as two classes of Boolean functions with low Walsh transform, are applied in cryptography and commnunications. This paper considers a new class of semi-bent quadratic Boolean function and a generalization of a new class of hyper-bent Boolean functions. The new class of semi-bent quadratic Boolean function of the form \(f(x)=\sum _{i=1}^{\lfloor \frac{m-1}{2}\rfloor }Tr^n_1(c_ix^{1+4^{i}}) (c_i\in \mathbb {F}_4\),\(n=2m)\) is simply characterized and enumerated. Then we present the characterization of a generalization of a new class of hyper-bent Boolean functions of the form \(f^{(r)}_{a,b}:=\mathrm {Tr}_{1}^{n}(ax^{r(2^m-1)}) +\mathrm {Tr}_{1}^{4}(bx^{\frac{2^n-1}{5}})\), where \(n=2m\), \(m\equiv 2\pmod 4\), \(a\in \mathbb {F}_{2^m}\) and \(b\in \mathbb {F}_{16}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berlekamp, E.R.: Algebraic Coding Theory. Revised edn. Aegean Park, Laguna Hills, CA (1984)
Boztas, S., Kumar, P.V.: Binary sequences with Gold-like correlation but larger linear span. IEEE Trans. Inf. Theory 40, 532–537 (1994)
Canteaut, A., Charpin, P., Kyureghyan, G.: A new class of monomial bent functions. Finite Fields Applicat. 14(1), 221–241 (2008)
Charpin, P., Gong, G.: Hyperbent functions, Kloosterman sums and Dickson polynomials. IEEE Trans. Inf. Theory 9(54), 4230–4238 (2008)
Charpin, P., Pasalic, E., Tavernier, C.: On bent and semi-bent quadratic Boolean functions. IEEE Trans. Inf. Theory 51(12), 4286–4298 (2005)
Dobbertin, H., Leander, G.: A survey of some recent results on bent functions. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 1–29. Springer, Heidelberg (2005)
Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inf. Theory 14(1), 154–156 (1968)
Hu, H., Feng, D.: On quadratic bent functions in polynomial forms. IEEE Trans. Inform. Theory 53, 2610–2615 (2007)
Helleseth, T.: Correlation of m-sequences and related topics. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 49–66. Springer, London (1998)
Helleseth, T., Kumar, P.V.: Sequences with low correlation. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1765–1853. North-Holland, Amsterdam (1998)
Lachaud, G., Wolfmann, J.: The weights of the orthogonal of the extended quadratic binary Goppa codes. IEEE Trans. Inform. Theory 36, 686–692 (1990)
Lidl, R., Niederreiter, H.: Finite fields. In: Encyclopedia of Mathematics and its Applications, vol. 20. Addison-Wesley, Reading (1983)
Khoo, K., Gong, G., Stinson, D.R.: A new family of Gold-like sequences. In: Proceedings of IEEE International Symposium on Information Theory, Lausanne, Switzerland, p. 181, June/July 2002
Khoo, K., Gong, G., Stinson, D.R.: A new characterization of semi-bent and bent functions on finite fields. Des. Codes. Cryptogr. 38(2), 279–295 (2006)
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
Ma, W., Lee, M., Zhang, F.: A new class of bent functions. IEICE Trans. Fundam. E88–A(7), 2039–2040 (2005)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)
Mesnager, S.: A new class of bent boolean functions in polynomial forms. In: Proceedings of International Workshop on Coding and Cryptography, WCC 2009, pp. 5–18 (2009)
Mesnager, S.: A new class of bent and hyper-bent boolean functions in polynomial forms. Des. Codes Crypt. 59(1–3), 265–279 (2011)
Mesnager, S.: A new family of hyper-bent boolean functions in polynomial form. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 402–417. Springer, Heidelberg (2009)
Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314. Springer, Heidelberg (1988)
Patterson, N., Wiedemann, D.H.: The covering radius of the \((2^{15},16)\) Reed-Muller code is at least 16276. IEEE Trans. Inf. Theory 29, 354–356 (1983)
Patterson, N.J., Wiedemann, D.H.: Correction to The covering radius of the \((2^{15},16)\) Reed-Muller code is at least 16276. IEEE Trans. Inf. Theory 36, 443 (1990)
Rothaus, O.S.: On bent functions. J. Combin. Theory A 20, 300–305 (1976)
Silverman, J.: Wieferich’s criterion and the abc-conjecture. J. Number Theory 30(2), 226–237 (1988)
Tang, C., Qi, Y., Xu, M., Wang, B., Yang, Y.: A new class of hyper-bent Boolean functions in binomial forms. CoRR, abs/1112.0062v2 (2012)
Tang, C., Qi, Y., Xu, M.: New quadratic bent functions in polynomial forms with coefficients in extension fields. IACR Crypt. ePrint Archive 2013, 405 (2013)
Wieferich, A.: Zum letzten Fermat’Schen Theorem. J. Reine Angew. Math. 136, 293–302 (1909)
Youssef, A.M., Gong, G.: Hyper-bent Functions. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 406–419. Springer, Heidelberg (2001)
Yu, N.Y., Gong, G.: Constructions of quadratic bent functions in polynomial forms. IEEE Trans. Inf. Theory 52(7), 3291–3299 (2006)
Acknowledgements
The authors would like to thank anonymous reviewers for their helpful advice and comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 10990011, 11401480, 61272499), and Science and Technology on Information Assurance Laboratory (Grant No. KJ-11-02). Yanfeng Qi acknowledges support from Aisino Corporation Inc.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Tang, C., Lou, Y., Qi, Y., Xu, M., Guo, B. (2014). A Note on Semi-bent and Hyper-bent Boolean Functions. In: Lin, D., Xu, S., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2013. Lecture Notes in Computer Science(), vol 8567. Springer, Cham. https://doi.org/10.1007/978-3-319-12087-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-12087-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12086-7
Online ISBN: 978-3-319-12087-4
eBook Packages: Computer ScienceComputer Science (R0)