Skip to main content

The Gallant-Lambert-Vanstone Decomposition Revisited

  • Conference paper
  • First Online:
Book cover Information Security and Cryptology (Inscrypt 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8567))

Included in the following conference series:

  • 973 Accesses

Abstract

The Gallant-Lambert-Vanstone method accelerates the computation of scalar multiplication \([k]P\) of a point (or a divisor) \(P\) of prime order \(r\) on some algebraic curve (or its Jacobian) by using an efficient endomorphism \(\phi \) on such curve. Suppose \(\phi \) has minimal polynomial \(h(x)=\sum _{i=0}^d a_ix^i \in \mathbb {Z}[x]\), the question how to efficiently decompose the scalar \(k\) as \([k]P=\sum _{i=0}^{d-1}[k_i]\phi ^i(P)\) with \(\max _i \log |k_i| \approx \frac{1}{d}\log r\) has drawn a lot of attention. In this paper we show the link between the lattice based decomposition and the division in \(\mathbb {Z}[\phi ]\) decomposition, and propose a hybrid method to decompose \(k\) with \(\max _i |k_i| \le 2^{(d-5)/4}d (dN(h))^{(d-1)/2}r^{1/d}\), where \(N(h)= \sum _{i=0}^{d-1} a_i^2\). In particular, we give explicit and efficient GLV decompositions for some genus \(1\) and \(2\) curves with efficient endomorphisms through decomposing the Frobenius map in \(\mathbb {Z}[\phi ]\), which also indicate that the complex multiplication usually implies good properties for GLV decomposition. Our results well support the GLV method for faster implementations of scalar multiplications on desired curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Cryptography. Chapman and Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  2. Babai, L.: On lovasz lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–13 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 194–210. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: High-performance scalar multiplication using 8-dimensional GLV/GLS decomposition. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 331–348. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Buhler, J., Koblitz, N.: Lattice basis reduction, jacobi sums and hyperelliptic cryptosystems. Bull. Aust. Math. Soc. 58(1), 147–154 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Berlin (1996)

    Google Scholar 

  7. Cox, D.: Primes of the Form \(x^2 + ny^2\). Wiley, New York (1989)

    MATH  Google Scholar 

  8. Costello, C., Hisil, H., Smith, B.: Faster Compact Diffie-Hellman: Endomorphisms on the x-line. Cryptology ePrint Archive Report 2013/692 (2013)

    Google Scholar 

  9. Dickson, L.E.: Cyclotomy, higher congruences, and waring’s problem. Amer. J. Math. 57, 391–424 (1935)

    Article  MathSciNet  Google Scholar 

  10. Enge, A.: Computing discrete logarithms in high-genus hyperelliptic jacobians in provably subexponential time. Math. Comput. 71, 729–742 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Furukawa, E., Kawazoe, M., Takahashi, T.: Counting points for hyperelliptic curves of type \(y^2= x^5 + ax\) over finite prime fields. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 26–41. Springer, Heidelberg (2003)

    Google Scholar 

  12. Gaudry, P.: An algorithm for solving the discrete log problem on hyperelliptic curves. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 19–34. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2008)

    Article  MathSciNet  Google Scholar 

  14. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  17. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985)

    Book  MATH  Google Scholar 

  18. Hu, Z., Longa, P., Xu, M.: Implementing the 4-dimensional GLV method on GLS elliptic curves with j-invariant 0. Des. Codes Cryptogr. 63(3), 331–343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Joux, A., Vitse, V.: Cover and decomposition index calculus on elliptic curves made practical. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 9–26. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Kim, D., Lim, S.: Integer decomposition for fast scalar multiplication on elliptic curves. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 13–20. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Longa, P., Miri, A.: New composite operations and precomputation scheme for elliptic curve cryptosystems over prime fields. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Longa, P., Sica, F.: Four-dimensional gallant-lambert-vanstone scalar multiplication. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 718–739. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Park, Y.-H., Jeong, S., Kim, C.H., Lim, J.: An alternate decomposition of an integer for faster point multiplication on certain elliptic curves. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 323–334. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Park, Y.-H., Jeong, S., Lim, J.: Speeding up point multiplication on hyperelliptic curves with efficiently-computable endomorphisms. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 197–208. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Rück, H.G.: Abelian surfaces and Jacobian varieties over finite fields. Compos. Math. 76, 351–366 (1990)

    MATH  Google Scholar 

  27. Shimura, G.: Abelian Varieties with Complex Multiplication and Modular Functions. Princeton University Press, Princeton (1998)

    MATH  Google Scholar 

  28. Sica F., Ciet M., Quisquater J.J.: Analysis of Gallant-Lambert-Vanstone Method Based on Efficient Endomophisms: Elliptic and Hyperelliptic Curves. In: Nyberg K., Heys H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 21–36. Springer, Heidelberg (2003)

    Google Scholar 

  29. Silverman, J.: The Arithmetic of Elliptic Curves. Springer, New York (1986)

    Book  MATH  Google Scholar 

  30. Zhang, F.G.: Twisted ate pairing on hyperelliptic curves and applications. China Sci. Inf. Sci. 53(8), 1528–1538 (2010)

    Article  Google Scholar 

  31. Zhou, Z., Hu, Z., Xu, M.Z., Song, W.G.: Efficient 3-Dimensional GLV Method for Faster Point Multiplication on Some GLS Elliptic Curves. Inf. Process. Lett. 110, 1003–1006 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments and suggestions. This work was supported by the Natural Science Foundation of China (Grants No. 61272499 and No. 10990011) and the Science and Technology on Information Assurance Laboratory (Grant No. KJ-11-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hu, Z., Xu, M. (2014). The Gallant-Lambert-Vanstone Decomposition Revisited. In: Lin, D., Xu, S., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2013. Lecture Notes in Computer Science(), vol 8567. Springer, Cham. https://doi.org/10.1007/978-3-319-12087-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12087-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12086-7

  • Online ISBN: 978-3-319-12087-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics