Abstract
The Gallant-Lambert-Vanstone method accelerates the computation of scalar multiplication \([k]P\) of a point (or a divisor) \(P\) of prime order \(r\) on some algebraic curve (or its Jacobian) by using an efficient endomorphism \(\phi \) on such curve. Suppose \(\phi \) has minimal polynomial \(h(x)=\sum _{i=0}^d a_ix^i \in \mathbb {Z}[x]\), the question how to efficiently decompose the scalar \(k\) as \([k]P=\sum _{i=0}^{d-1}[k_i]\phi ^i(P)\) with \(\max _i \log |k_i| \approx \frac{1}{d}\log r\) has drawn a lot of attention. In this paper we show the link between the lattice based decomposition and the division in \(\mathbb {Z}[\phi ]\) decomposition, and propose a hybrid method to decompose \(k\) with \(\max _i |k_i| \le 2^{(d-5)/4}d (dN(h))^{(d-1)/2}r^{1/d}\), where \(N(h)= \sum _{i=0}^{d-1} a_i^2\). In particular, we give explicit and efficient GLV decompositions for some genus \(1\) and \(2\) curves with efficient endomorphisms through decomposing the Frobenius map in \(\mathbb {Z}[\phi ]\), which also indicate that the complex multiplication usually implies good properties for GLV decomposition. Our results well support the GLV method for faster implementations of scalar multiplications on desired curves.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Cryptography. Chapman and Hall/CRC, Boca Raton (2006)
Babai, L.: On lovasz lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–13 (1986)
Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 194–210. Springer, Heidelberg (2013)
Bos, J.W., Costello, C., Hisil, H., Lauter, K.: High-performance scalar multiplication using 8-dimensional GLV/GLS decomposition. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 331–348. Springer, Heidelberg (2013)
Buhler, J., Koblitz, N.: Lattice basis reduction, jacobi sums and hyperelliptic cryptosystems. Bull. Aust. Math. Soc. 58(1), 147–154 (1998)
Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Berlin (1996)
Cox, D.: Primes of the Form \(x^2 + ny^2\). Wiley, New York (1989)
Costello, C., Hisil, H., Smith, B.: Faster Compact Diffie-Hellman: Endomorphisms on the x-line. Cryptology ePrint Archive Report 2013/692 (2013)
Dickson, L.E.: Cyclotomy, higher congruences, and waring’s problem. Amer. J. Math. 57, 391–424 (1935)
Enge, A.: Computing discrete logarithms in high-genus hyperelliptic jacobians in provably subexponential time. Math. Comput. 71, 729–742 (2002)
Furukawa, E., Kawazoe, M., Takahashi, T.: Counting points for hyperelliptic curves of type \(y^2= x^5 + ax\) over finite prime fields. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 26–41. Springer, Heidelberg (2003)
Gaudry, P.: An algorithm for solving the discrete log problem on hyperelliptic curves. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 19–34. Springer, Heidelberg (2000)
Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2008)
Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)
Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2009)
Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985)
Hu, Z., Longa, P., Xu, M.: Implementing the 4-dimensional GLV method on GLS elliptic curves with j-invariant 0. Des. Codes Cryptogr. 63(3), 331–343 (2012)
Joux, A., Vitse, V.: Cover and decomposition index calculus on elliptic curves made practical. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 9–26. Springer, Heidelberg (2012)
Kim, D., Lim, S.: Integer decomposition for fast scalar multiplication on elliptic curves. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 13–20. Springer, Heidelberg (2003)
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)
Longa, P., Miri, A.: New composite operations and precomputation scheme for elliptic curve cryptosystems over prime fields. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)
Longa, P., Sica, F.: Four-dimensional gallant-lambert-vanstone scalar multiplication. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 718–739. Springer, Heidelberg (2012)
Park, Y.-H., Jeong, S., Kim, C.H., Lim, J.: An alternate decomposition of an integer for faster point multiplication on certain elliptic curves. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 323–334. Springer, Heidelberg (2002)
Park, Y.-H., Jeong, S., Lim, J.: Speeding up point multiplication on hyperelliptic curves with efficiently-computable endomorphisms. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 197–208. Springer, Heidelberg (2002)
Rück, H.G.: Abelian surfaces and Jacobian varieties over finite fields. Compos. Math. 76, 351–366 (1990)
Shimura, G.: Abelian Varieties with Complex Multiplication and Modular Functions. Princeton University Press, Princeton (1998)
Sica F., Ciet M., Quisquater J.J.: Analysis of Gallant-Lambert-Vanstone Method Based on Efficient Endomophisms: Elliptic and Hyperelliptic Curves. In: Nyberg K., Heys H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 21–36. Springer, Heidelberg (2003)
Silverman, J.: The Arithmetic of Elliptic Curves. Springer, New York (1986)
Zhang, F.G.: Twisted ate pairing on hyperelliptic curves and applications. China Sci. Inf. Sci. 53(8), 1528–1538 (2010)
Zhou, Z., Hu, Z., Xu, M.Z., Song, W.G.: Efficient 3-Dimensional GLV Method for Faster Point Multiplication on Some GLS Elliptic Curves. Inf. Process. Lett. 110, 1003–1006 (2010)
Acknowledgments
The authors would like to thank the anonymous reviewers for their helpful comments and suggestions. This work was supported by the Natural Science Foundation of China (Grants No. 61272499 and No. 10990011) and the Science and Technology on Information Assurance Laboratory (Grant No. KJ-11-02).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Hu, Z., Xu, M. (2014). The Gallant-Lambert-Vanstone Decomposition Revisited. In: Lin, D., Xu, S., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2013. Lecture Notes in Computer Science(), vol 8567. Springer, Cham. https://doi.org/10.1007/978-3-319-12087-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-12087-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12086-7
Online ISBN: 978-3-319-12087-4
eBook Packages: Computer ScienceComputer Science (R0)