Skip to main content

Exploring Geospatial Music Listening Patterns in Microblog Data

  • Conference paper
  • First Online:
Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation (AMR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8382))

Included in the following conference series:

Abstract

Microblogs are a steadily growing, valuable, albeit noisy, source of information on interests, preferences, and activities. As music plays an important role in many human lives we aim to leverage microblogs for music listening-related information. Based on this information we present approaches to estimate artist similarity, popularity, and local trends, as well as approaches to cluster artists with respect to additional tag information. Furthermore, we elaborate a novel geo-aware interaction approach that integrates these diverse pieces of information mined from music-related tweets. Including geospatial information at the level of tweets, we also present a web-based user interface to browse the “world of music” as seen by the “Twittersphere”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://blog.twitter.com/2011/03/numbers.html. Accessed August 2012

  2. http://last.fm. Accessed August 2012

  3. http://musicbrainz.org. Accessed August 2012

  4. https://developers.google.com/maps/. Accessed August 2012

  5. http://www.allmusic.com. Accessed August 2012

  6. http://www.freebase.com. Accessed August 2012

  7. http://www.spotify.com. Accessed August 2012

  8. http://www.twitter.com. Accessed August 2012

  9. Armentano, M., Godoy, D., Amandi, A.: Recommending information sources to information seekers in twitter. In: International Workshop on Social Web Mining, Co-located with IJCAI 2011 (2011)

    Google Scholar 

  10. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley, New York (1999)

    Google Scholar 

  11. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)

    Article  Google Scholar 

  12. Byklum, D.: Geography and music: making the connection. J. Geogr. 93(6), 274–278 (1994)

    Article  Google Scholar 

  13. De Longueville, B., Smith, R.S., Luraschi, G.: “OMG, from here, I can see the flames!”: a use case of mining location based social networks to acquire spatio-temporal data on forest fires. In: Proceedings of the 2009 International Workshop on Location Based Social Networks, LBSN ’09, pp. 73–80. ACM, New York (2009)

    Google Scholar 

  14. Duan, Y., Jiang, L., Qin, T., Zhou, M., Shum, H.-Y.: An empirical study on learning to rank of tweets. In: Huang, C.-R., Jurafsky, D. (eds.) Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010), pp. 295–303. Tsinghua University Press, August 2010

    Google Scholar 

  15. Govaerts, S., Duval, E.: A web-based approach to determine the origin of an artist. In: Hirata, K., Tzanetakis, G., Yoshii, K. (eds.) Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2010), pp. 261–266. International Society for Music Information Retrieval (2009)

    Google Scholar 

  16. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: Proceedings of WebKDD and SNA-KDD, San Jose, CA, USA, August 2007

    Google Scholar 

  17. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, WWW ’10, pp. 591–600. ACM, New York (2010)

    Google Scholar 

  18. Lee, C.-H., Yang, H.-C., Chien, T.-F., Wen, W.-S.: A novel approach for event detection by mining spatio-temporal information on microblogs. In: International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2011), pp. 254–259, July 2011

    Google Scholar 

  19. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  20. Oulasvirta, A., Lehtonen, E., Kurvinen, E., Raento, M.: Making the ordinary visible in microblogs. Pers. Ubiquit. Comput. 14(3), 237–249 (2010)

    Article  Google Scholar 

  21. Park, S., Kim, S., Lee, S., Yeo, W.S.: Online map interface for creative and interactive MusicMaking. In: Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia, pp. 331–334 (2010)

    Google Scholar 

  22. Paul, M.J., Dredze, M.: You are what you tweet: analyzing twitter for public health. Artif. Intell. 38, 265–272 (2011)

    Google Scholar 

  23. Raimond, Y., Sutton, C., Sandler, M.: Automatic interlinking of music datasets on the semantic web. In: Linked Data on the Web (LDOW2008) (2008)

    Google Scholar 

  24. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web (WWW 2011), pp. 695–704. ACM, New York (2011)

    Google Scholar 

  25. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web (WWW 2010), May 2010

    Google Scholar 

  26. Schedl, M.: Analyzing the potential of microblogs for spatio-temporal popularity estimation of music artists. In: Proceedings of IJCAI: International Workshop on Social Web Mining, Barcelona, Spain, July 2011

    Google Scholar 

  27. Schedl, M., Hauger, D.: Mining microblogs to infer music artist similarity and cultural listening patterns. In: Proceedings of the 21st International World Wide Web Conference (WWW 2012): 4th International Workshop on Advances in Music Information Research: “The Web of Music” (AdMIRe 2012), Lyon, France (2012)

    Google Scholar 

  28. Schedl, M., Pohle, T., Koenigstein, N., Knees, P.: What’s Hot? estimating country-specific artist popularity. In: Proceedings of the 11th Internat, Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht, Netherlands, August 2010

    Google Scholar 

  29. Sharifi, B., Hutton, M.-A., Kalita, J.: Summarizing microblogs automatically. In: Proceedings of NAACL HLT, June 2010

    Google Scholar 

  30. Steeg, G.V.: Information theoretic tools for social media. In: Making Sense of Microposts (#MSM2012), p. 1 (2012)

    Google Scholar 

  31. Teevan, J., Ramage, D., Morris, M.R.: #TwitterSearch: a comparison of microblog search and web search. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM’11), Hong Kong, China, February 2011

    Google Scholar 

  32. Weng, J., Lim, E.-P., Jiang, J., He, Q.: TwitterRank: finding topic-sensitive influential twitterers. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM ’10, pp. 261–270. ACM, New York (2010)

    Google Scholar 

  33. Wu, S., Hofman, J.M., Mason, W.A., Watts, D.J.: Who says what to whom on twitter. In: Proceedings of the 20th International Conference on World Wide Web (WWW 2011), pp. 705–714. ACM, New York (2011)

    Google Scholar 

  34. Zangerle, E., Gassler, W., Specht, G.: Exploiting twitter’s collective knowledge for music recommendations. In: Making Sense of Microposts (#MSM2012), pp. 14–17 (2012)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Austrian Science Funds (FWF): P22856-N23 and Z159.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schedl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hauger, D., Schedl, M. (2014). Exploring Geospatial Music Listening Patterns in Microblog Data. In: Nürnberger, A., Stober, S., Larsen, B., Detyniecki, M. (eds) Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation. AMR 2012. Lecture Notes in Computer Science(), vol 8382. Springer, Cham. https://doi.org/10.1007/978-3-319-12093-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12093-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12092-8

  • Online ISBN: 978-3-319-12093-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics