Abstract
Dynamic contrast-enhanced MRI (DCE-MRI) images are increasingly used for assessing cancer treatment outcome. These time sequences are typically affected by motion, which causes significant errors in tracer kinetic model analysis. Current intra-sequence registration methods for contrast enhanced data either assume restricted transformations (e.g. translation) or employ continuous optimization, which is prone to local optima. In this work, we propose a new approach to DCE-MRI intra-sequence registration and pharmacokinetic modelling, which is formulated in an MRF optimization framework. The complete 4D graph corresponding to a DCE-MRI sequence is reduced to a concatenation of minimum spanning trees, which can be optimized more efficiently. To address the changes due to contrast, a data cost function which incorporates pharmacokinetic modelling information is formulated. The advantages of this method are demonstrated on 8 DCE-MRI image sequences of patients with advanced rectal tumours, presenting mild to severe motion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zoellner, F.G., Sancee, R., Rogelj, P., Ledesma-Carbayo, M.J., Rorvik, J., Santos, A., Lundervold, A.: Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses. Comput. Med. Imag. Graphics 33(3) (2009)
Tanner, C., Schnabel, J.A., Chung, D., Clarkson, M.J., Rueckert, D., Hill, D.L.G., Hawkes, D.J.: Volume and shape preservation of enhancing lesions when applying non-rigid registration to a time series of contrast enhancing MR breast images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 327–337. Springer, Heidelberg (2000)
Melbourne, A., Atkinson, D., White, M.J., Collins, D., Leach, M., Hawkes, D.: Registration of dynamic contrast-enhanced MRI using a progressive principal component registration (PPCR). Phys. Med. Biology 52(17) (2007)
Hayton, P., Brady, M., Tarassenko, L., Moore, N.: Analysis of dynamic MR breast images using a model of contrast enhancement. Medical image analysis 1(3) (1997)
Buonaccorsi, G.A., O’Connor, J.P.B., Caunce, A., Roberts, C., Cheung, S., Watson, Y., Davies, K., Hope, L., Jackson, A., Jayson, G.C., Parker, G.J.M.: Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data. Magnetic Resonance in Medicine 58(5) (2007)
Bhushan, M., Schnabel, J.A., Risser, L., Heinrich, M.P., Brady, J.M., Jenkinson, M.: Motion correction and parameter estimation in dceMRI sequences: Application to colorectal cancer. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 476–483. Springer, Heidelberg (2011)
Prim, R.: Shortest connection networks and some generalizations. Bell System Technical Journal (36) (1957)
Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Medical Image Analysis 12(6) (2008)
Boykov, V., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Tran. PAMI 23, 1222–1239 (2001)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Intl. J. Computer Vision 70(1) (2006)
Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Tran. PAMI 28(10) (2006)
Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: A survey. IEEE Tran. Medical Imaging 32(7) (2013)
Tofts, P.S.: Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J. Magnetic Resonance Imaging 7(1) (1997)
Orton, M.R., d’Arcy, J.A., Walker-Samuel, S., Hawkes, D.J., Atkinson, D., Collins, D.J., Leach, M.O.: Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys. Med. Biology 53(5) (2008)
Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Tran. Medical Imaging 32(7) (2013)
Heinrich, M.P., Simpson, I., Jenkinson, M., Brady, M., Schnabel, J.A.: Uncertainty estimates for improved accuracy of registration-based segmentation propagation using discrete optimization. In: MICCAI SATA Workshop (2013)
Felzenszwalb, P.F., Zabih, R.: Dynamic programming and graph algorithms in computer vision. IEEE Tran. PAMI 33(4), 721–740 (2011)
Hirschmueller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Tran. PAMI 30(2), 328–341 (2008)
Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Enescu, M., Heinrich, M.P., Hill, E., Sharma, R., Chappell, M.A., Schnabel, J.A. (2014). An MRF-Based Discrete Optimization Framework for Combined DCE-MRI Motion Correction and Pharmacokinetic Parameter Estimation. In: Cardoso, M.J., Simpson, I., Arbel, T., Precup, D., Ribbens, A. (eds) Bayesian and grAphical Models for Biomedical Imaging. Lecture Notes in Computer Science, vol 8677. Springer, Cham. https://doi.org/10.1007/978-3-319-12289-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-12289-2_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12288-5
Online ISBN: 978-3-319-12289-2
eBook Packages: Computer ScienceComputer Science (R0)