Abstract
A set of vertices in a graph is connected if the set induces a connected subgraph. Using Shearer’s entropy lemma, we show that the number of connected sets in an \(n\)-vertex graph with maximum vertex degree \(d\) is \(O(1.9351^n)\) for \(d=3\), \(O(1.9812^n)\) for \(d=4\), and \(O(1.9940^n)\) for \(d=5\). Dually, we construct infinite families of generalized ladder graphs whose number of connected sets is bounded from below by \(\varOmega (1.5537^n)\) for \(d=3\), \(\varOmega (1.6180^n)\) for \(d=4\), and \(\varOmega (1.7320^n)\) for \(d=5\).
K.K., M.K., and J.K. supported by the Academy of Finland, grants 125637, 218153, and 255675. P.K. supported by the Academy of Finland, grants 252083 and 256287.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Our implementation is available at http://www.cs.helsinki.fi/u/jwkangas/consets/.
References
Alon, N.: Independent sets in regular graphs and sum-free subsets of finite groups. Isr. J. Math. 73, 247–256 (1991)
Binkele-Raible, D., Fernau, H., Gaspers, S., Liedloff, M.: Exact and parameterized algorithms for max internal spanning tree. Algorithmica 65(1), 95–128 (2013)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in vertex-exponential time. In: FOCS, pp. 677–686. IEEE Computer Society (2008)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Trimmed Moebius inversion and graphs of bounded degree. Theor. Comput. Syst. 47(3), 637–654 (2010)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The traveling salesman problem in bounded degree graphs. ACM Trans. Algorithms 8(2), 18:1–18:13 (2012)
Bollobás, B.: The Art of Mathematics: Coffee Time in Memphis. Cambridge University Press (2006)
Chung, F., Graham, R., Frankl, P., Shearer, J.: Some intersection theorems for ordered sets and graphs. J. Comb. Theor. Ser. A 43(1), 23–37 (1986)
Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)
Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications. ACM Trans. Algorithms 5(1), 9:1–9:17 (2008)
Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Marion, J.Y., Schwentick, T. (eds.) STACS. Volume 5 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 383–394 (2010)
Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. Combinatorica 32(3), 289–308 (2012)
Galvin, D.: An upper bound for the number of independent sets in regular graphs. Discrete Math. 309(23–24), 6635–6640 (2009)
Gaspers, S., Kratsch, D., Liedloff, M.: On independent sets and bicliques in graphs. Algorithmica 62(3–4), 637–658 (2012)
Gaspers, S., Mnich, M.: Feedback vertex sets in tournaments. J. Graph Theory 72(1), 72–89 (2013)
Kahn, J.: An entropy approach to the hard-core model on bipartite graphs. Combin. Probab. Comput. 10, 219–237 (2001)
Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 3, 23–28 (1965)
Perrier, E., Imoto, S., Miyano, S.: Finding optimal Bayesian network given a super-structure. J. Mach. Learn. Res. 9, 2251–2286 (2008)
Zhao, Y.: The number of independent sets in a regular graph. Combin. Probab. Comput. 19, 315–320 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kangas, K., Kaski, P., Koivisto, M., Korhonen, J.H. (2014). On the Number of Connected Sets in Bounded Degree Graphs. In: Kratsch, D., Todinca, I. (eds) Graph-Theoretic Concepts in Computer Science. WG 2014. Lecture Notes in Computer Science, vol 8747. Springer, Cham. https://doi.org/10.1007/978-3-319-12340-0_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-12340-0_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12339-4
Online ISBN: 978-3-319-12340-0
eBook Packages: Computer ScienceComputer Science (R0)