Skip to main content

On the Number of Connected Sets in Bounded Degree Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 8747))

Included in the following conference series:

  • 898 Accesses

Abstract

A set of vertices in a graph is connected if the set induces a connected subgraph. Using Shearer’s entropy lemma, we show that the number of connected sets in an \(n\)-vertex graph with maximum vertex degree \(d\) is \(O(1.9351^n)\) for \(d=3\), \(O(1.9812^n)\) for \(d=4\), and \(O(1.9940^n)\) for \(d=5\). Dually, we construct infinite families of generalized ladder graphs whose number of connected sets is bounded from below by \(\varOmega (1.5537^n)\) for \(d=3\), \(\varOmega (1.6180^n)\) for \(d=4\), and \(\varOmega (1.7320^n)\) for \(d=5\).

K.K., M.K., and J.K. supported by the Academy of Finland, grants 125637, 218153, and 255675. P.K. supported by the Academy of Finland, grants 252083 and 256287.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our implementation is available at http://www.cs.helsinki.fi/u/jwkangas/consets/.

References

  1. Alon, N.: Independent sets in regular graphs and sum-free subsets of finite groups. Isr. J. Math. 73, 247–256 (1991)

    Article  MATH  Google Scholar 

  2. Binkele-Raible, D., Fernau, H., Gaspers, S., Liedloff, M.: Exact and parameterized algorithms for max internal spanning tree. Algorithmica 65(1), 95–128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in vertex-exponential time. In: FOCS, pp. 677–686. IEEE Computer Society (2008)

    Google Scholar 

  4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Trimmed Moebius inversion and graphs of bounded degree. Theor. Comput. Syst. 47(3), 637–654 (2010)

    Article  MATH  Google Scholar 

  5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The traveling salesman problem in bounded degree graphs. ACM Trans. Algorithms 8(2), 18:1–18:13 (2012)

    Article  Google Scholar 

  6. Bollobás, B.: The Art of Mathematics: Coffee Time in Memphis. Cambridge University Press (2006)

    Google Scholar 

  7. Chung, F., Graham, R., Frankl, P., Shearer, J.: Some intersection theorems for ordered sets and graphs. J. Comb. Theor. Ser. A 43(1), 23–37 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications. ACM Trans. Algorithms 5(1), 9:1–9:17 (2008)

    Article  MathSciNet  Google Scholar 

  10. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Marion, J.Y., Schwentick, T. (eds.) STACS. Volume 5 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 383–394 (2010)

    Google Scholar 

  11. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. Combinatorica 32(3), 289–308 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galvin, D.: An upper bound for the number of independent sets in regular graphs. Discrete Math. 309(23–24), 6635–6640 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gaspers, S., Kratsch, D., Liedloff, M.: On independent sets and bicliques in graphs. Algorithmica 62(3–4), 637–658 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gaspers, S., Mnich, M.: Feedback vertex sets in tournaments. J. Graph Theory 72(1), 72–89 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kahn, J.: An entropy approach to the hard-core model on bipartite graphs. Combin. Probab. Comput. 10, 219–237 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 3, 23–28 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. Perrier, E., Imoto, S., Miyano, S.: Finding optimal Bayesian network given a super-structure. J. Mach. Learn. Res. 9, 2251–2286 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Zhao, Y.: The number of independent sets in a regular graph. Combin. Probab. Comput. 19, 315–320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kustaa Kangas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kangas, K., Kaski, P., Koivisto, M., Korhonen, J.H. (2014). On the Number of Connected Sets in Bounded Degree Graphs. In: Kratsch, D., Todinca, I. (eds) Graph-Theoretic Concepts in Computer Science. WG 2014. Lecture Notes in Computer Science, vol 8747. Springer, Cham. https://doi.org/10.1007/978-3-319-12340-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12340-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12339-4

  • Online ISBN: 978-3-319-12340-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics