Skip to main content

Linear Rank-Width of Distance-Hereditary Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 8747))

Included in the following conference series:

Abstract

We present a characterization of the linear rank-width of distance-hereditary graphs. Using the characterization, we show that the linear rank-width of every \(n\)-vertex distance-hereditary graph can be computed in time \(\mathcal {O}(n^2\cdot \log (n))\), and a linear layout witnessing the linear rank-width can be computed with the same time complexity. For our characterization, we combine modifications of canonical split decompositions with an idea of [Megiddo, Hakimi, Garey, Johnson, Papadimitriou: The complexity of searching a graph. JACM 1988], used for computing the path-width of trees. We also provide a set of distance-hereditary graphs which contains the set of distance-hereditary vertex-minor obstructions for linear rank-width. The set given in [Jeong, Kwon, Oum: Excluded vertex-minors for graphs of linear rank-width at most k. STACS 2013: 221–232] is a subset of our obstruction set.

Isolde Adler: Supported by the German Research Council, Project GalA, AD 411/1-1.

Mamadou Moustapha Kanté: Supported by the French Agency for Research under the DORSO project.

O-joung Kwon: Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0011653).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, I., Farley, A.M., Proskurowski, A.: Obstructions for linear rank-width at most 1. Discrete Appl. Math. 168, 3–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, I., Kanté, M.M.: Linear rank-width and linear clique-width of trees. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 12–25. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory, Ser. B 41(2), 182–208 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouchet, A.: Transforming trees by successive local complementations. J. Graph Theory 12(2), 195–207 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3), 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cunnigham, W.H., Edmonds, J.: A combinatorial decomposition theory. Can. J. Math. 32, 734–765 (1980)

    Article  Google Scholar 

  7. Dahlhaus, E.: Parallel algorithms for hierarchical clustering, and applications to split decomposition and parity graph recognition. J. Graph Algorithms 36(2), 205–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diestel, R.: Graph Theory. Graduate texts in mathematics, vol. 173, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  9. Ellis, J.A., Sudborough, I.H., Turner, J.S.: The vertex separation and search number of a graph. Inf. Comput. 113(1), 50–79 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is np-complete. SIAM J. Discrete Math. 23(2), 909–939 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ganian, R.: Thread graphs, linear rank-width and their algorithmic applications. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 38–42. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Gavoille, C., Paul, C.: Distance labeling scheme and split decomposition. Discrete Math. 273(1–3), 115–130 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gioan, E., Paul, C.: Split decomposition and graph-labelled trees: characterizations and fully dynamic algorithms for totally decomposable graphs. Discrete Appl. Math. 160(6), 708–733 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeong, J., Kwon, O.-J., Oum, S.-I.: Excluded vertex-minors for graphs of linear rank-width at most k. In: Portier, N., Wilke, T. (eds.) STACS. LIPIcs, vol. 20, pp. 221–232. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  15. Kloks, T., Bodlaender, H.L., Müller, H., Kratsch, D.: Computing treewidth and minimum fill-in: All you need are the minimal separators. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 260–271. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  16. Megiddo, N., Louis Hakimi, S., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The complexity of searching a graph. J. ACM 35(1), 18–44 (1988)

    Article  MATH  Google Scholar 

  17. Oum, S.: Rank-width and vertex-minors. J. Comb. Theory, Ser. B 95(1), 79–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96(4), 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O-joung Kwon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Adler, I., Kanté, M.M., Kwon, Oj. (2014). Linear Rank-Width of Distance-Hereditary Graphs. In: Kratsch, D., Todinca, I. (eds) Graph-Theoretic Concepts in Computer Science. WG 2014. Lecture Notes in Computer Science, vol 8747. Springer, Cham. https://doi.org/10.1007/978-3-319-12340-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12340-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12339-4

  • Online ISBN: 978-3-319-12340-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics