Skip to main content

Big Data Matrix Singular Value Decomposition Based on Low-Rank Tensor Train Decomposition

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2014 (ISNN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8866))

Included in the following conference series:

Abstract

We propose singular value decomposition (SVD) algorithms for very large-scale matrices based on a low-rank tensor decomposition technique called the tensor train (TT) format. By using the proposed algorithms, we can compute several dominant singular values and corresponding singular vectors of large-scale structured matrices given in a low-rank TT format. We propose a large-scale trace optimization problem, and in the proposed methods, the large-scale optimization problem is reduced to sequential small-scale optimization problems. We show that the computational complexity of the proposed algorithms scales logarithmically with the matrix size if the TT-ranks are bounded. Numerical simulations based on very large-scale Hilbert matrix demonstrate the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Comon, P., Golub, G.H.: Tracking a Few Extreme Singular Values and Vectors in Signal Processing. Proceedings of the IEEE 78, 1327–1343 (1990)

    Article  Google Scholar 

  2. Frieze, A., Kannan, R., Vempala, S.: Fast Monte-Carlo Algorithms for Finding Low-Rank Approximations. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, pp. 370–378 (1998)

    Google Scholar 

  3. Oseledets, I.V.: Tensor-Train Decomposition. SIAM J. Sci. Comput. 33, 2295–2317 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Grasedyck, L., Kressner, D., Tobler, C.: A Literature Survey of Low-Rank Tensor Approximation Techniques. arXiv:1302.7121 (2013)

  5. Huckle, T., Waldherr, K., Schulte-Herbrüggen, T.: Computations in Quantum Tensor Networks. Linear Algebra Appl. 438, 750–781 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cichocki, A.: Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions. arXiv:1301.6068 (2014)

  7. Lebedeva, O.S.: Tensor Conjugate-Gradient-Type Method for Rayleigh Quotient Minimization in Block QTT-Format. Russian J. Numer. Anal. Math. Modelling 26, 465–489 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dolgov, S.V., Khoromskij, B.N., Oseledets, I.V., Savostyanov, D.V.: Computation of Extreme Eigenvalues in Higher Dimensions Using Block Tensor Train Format. Comp. Phys. Comm. 185, 1207–1216 (2014)

    Article  Google Scholar 

  9. Kressner, D., Steinlechner, M., Uschmajew, A.: Low-Rank Tensor Methods with Subspace Correction for Symmetric Eigenvalue Problems. MATHICSE Technical Report 40.2013, EPFL, Lausanne (2013)

    Google Scholar 

  10. Holtz, S., Rohwedder, T., Schneider, R.: The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format. SIAM J. Sci. Comput. 34, A683–A713 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Schollwöck, U.: The Density-Matrix Renormalization Group in the Age of Matrix Product States. Ann. Physics 326, 96–192 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lee, N., Cichocki, A.: Fundamental Tensor Operations for Large-Scale Data Analysis in Tensor Train Formats. arXiv:1405.7786 (2014)

  13. Kolda, T.G., Bader, B.W.: Tensor Decompositions and Applications. SIAM Rev. 51, 455–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Knyazev, A.V.: Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method. SIAM J. Sci. Comput. 23, 517–541 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK User’s Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Software Environ. Tools 6. SIAM, Philadelphia (1998). http://www.caam.rice.edu/software/ARPACK/

  16. Kazeev, V.A., Khoromskij, B.N., Tyrtyshnikov, E.E.: Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity. SIAM J. Sci. Comput. 35, A1511–A1536 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Holtz, S., Rohwedder, T., Schneider, R.: On Manifolds of Tensors with Fixed TT-Rank. Numer. Math. 120, 701–731 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namgil Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lee, N., Cichocki, A. (2014). Big Data Matrix Singular Value Decomposition Based on Low-Rank Tensor Train Decomposition. In: Zeng, Z., Li, Y., King, I. (eds) Advances in Neural Networks – ISNN 2014. ISNN 2014. Lecture Notes in Computer Science(), vol 8866. Springer, Cham. https://doi.org/10.1007/978-3-319-12436-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12436-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12435-3

  • Online ISBN: 978-3-319-12436-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics