Skip to main content

Content-Adaptive Rain and Snow Removal Algorithms for Single Image

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2014 (ISNN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8866))

Included in the following conference series:

  • 4360 Accesses

Abstract

In this paper, we present two content-adaptive rain and snow removal algorithms for single image based on filtering. The first algorithm treats rain and snow removal task as an issue of bilateral filtering, where a content-based saliency prior is introduced. While the other views the same task from the perspective of guided-image-filtering, and the guidance image is derived according to the statistical property of raindrops or snowflakes as well as image background content. A comparative study and quantitative evaluation with some main existing image assessment algorithms demonstrate better performance of our proposed algorithms. The main contributions of our works are twofold: firstly, to the best of our knowledge, our algorithms are among the first to introduce image content information for single-image-based rain and snow removal; and secondly, we are also among the first to introduce quantitative assessment for single-image-based rain and snow removal tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, X., Li, H., Qi, Y., Leow, W.K., Ng, T.K.: Rain Removal in Video by Combining Temporal and Chromatic Properties. In: Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 461–464 (2006)

    Google Scholar 

  2. Garg, K., Nayar, S.K.: Detection and Removal of Rain from Videos. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I-528–I-535 (2004)

    Google Scholar 

  3. He, K., Sun, J., Tang, X.: Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Analysis and Machine Intelligence 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  4. Garg, K., Nayar, S.K.: Vision and Rain. International Journal of Computer Vision 75(1), 3–27 (2007)

    Article  Google Scholar 

  5. Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006)

    Article  Google Scholar 

  6. Brewer, N., Liu, N.: Using the shape characteristics of rain to identify and remove rain from video. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR&SPR 2008. LNCS, vol. 5342, pp. 451–458. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Bossu, J., Hautière, N., Tarel, J.P.: Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Computer Vision 93(3), 348–367 (2011)

    Article  Google Scholar 

  8. Fu, Y.H., Kang, L.W., Lin, C.W., Hsu, C.T.: Single-frame-based rain removal via image decomposition. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1453–1456 (2011)

    Google Scholar 

  9. Xu, J., Zhao, W., Liu, P., Tang, X.: An Improved Guidance Image Based Method to Remove Rain and Snow in a Single Image. Computer and Information Science 5(3), 49 (2012)

    Google Scholar 

  10. Zheng, X., Liao, Y., Guo, W., Fu, X., Ding, X.: Single-Image-Based Rain and Snow Removal Using Multi-guided Filter. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013, Part III. LNCS, vol. 8228, pp. 258–265. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Processing 15(2), 430–444 (2006)

    Article  Google Scholar 

  13. Zhang, L., Zhang, D., Mou, X.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Processing 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  14. Glickman, T.S., Zenk, W.: Glossary of meteorology (2000)

    Google Scholar 

  15. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: International Conference on Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  16. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Analysis and Machine Intelligence 35(1), 185–207 (2013)

    Article  MathSciNet  Google Scholar 

  17. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Analysis and Machine Intelligence 34(10), 1915–1926 (2012)

    Article  Google Scholar 

  18. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)

    Google Scholar 

  19. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 409–416 (2011)

    Google Scholar 

  20. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Shum, H.: Y: Learning to detect a salient object. IEEE Trans. Pattern Analysis and Machine Intelligence 33(2), 353–367 (2011)

    Article  Google Scholar 

  21. Columbia University Computer Vision Laboratory Detection and Removal of Rain Project. http://www.cs.columbia.edu/CAVE/projects/rain_detection/

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shujian Yu , Yixiao Zhao or Baojun Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yu, S. et al. (2014). Content-Adaptive Rain and Snow Removal Algorithms for Single Image. In: Zeng, Z., Li, Y., King, I. (eds) Advances in Neural Networks – ISNN 2014. ISNN 2014. Lecture Notes in Computer Science(), vol 8866. Springer, Cham. https://doi.org/10.1007/978-3-319-12436-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12436-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12435-3

  • Online ISBN: 978-3-319-12436-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics