Skip to main content

Measuring Linearity of Planar Curves

  • Conference paper
  • First Online:
Pattern Recognition Applications and Methods

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 318))

Abstract

In this paper we define a new linearity measure which can be applied to open planar curve segments. We have considered the sum of the distances between the curve end points and the curve centroid. We have shown that this sum is bounded from above by the length of the curve segment considered. In addition, we have proven that this sum equals the length of the curve segment only in the case of straight line segments. Exploiting such a nice characterization of straight line segments, we define a new linearity measure for planar curves. The new measure ranges over the interval \((0,1],\) and produces the value \(1\) if and only if the measured line is a perfect straight line segment. Also, the new linearity measure is invariant with respect to translations, rotations and scaling transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, M.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  2. Bowman, E., Soga, K., Drummond, T.: Particle shape characterisation using Fourier descriptor analysis. Geotechnique 51(6), 545–554 (2001)

    Article  Google Scholar 

  3. Ruberto, C.D., Dempster, A.: Circularity measures based on mathematical morphology. Electron. Lett. 36(20), 1691–1693 (2000)

    Article  Google Scholar 

  4. Rahtu, E., Salo, M., Heikkilä, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. Patt. Anal. Mach. Intell. 28(9), 1501–1512 (2006)

    Article  Google Scholar 

  5. Melter, R., Stojmenović, I., Žunić, J.: A new characterization of digital lines by least square fits. Pattern Recognit. Lett. 14(2), 83–88 (1993)

    Article  MATH  Google Scholar 

  6. Imre, A.: Fractal dimension of time-indexed paths. Appl. Math. Comput. 207(1), 221–229 (2009)

    MathSciNet  Google Scholar 

  7. Schweitzer, H., Straach, J.: Utilizing moment invariants and Gröbner bases to reason about shapes. Comput. Intell. 14(4), 461–474 (1998)

    Article  MathSciNet  Google Scholar 

  8. Acketa, D., Žunić, J.: On the number of linear partitions of the (m, n)-grid. Inf. Process. Lett. 38(3), 163–168 (1991)

    Article  MATH  Google Scholar 

  9. Direkoglu, C., Nixon, M.: Shape classification via image-based multiscale description. Pattern Recognit. 44(9), 2134–2146 (2011)

    Article  Google Scholar 

  10. Manay, S., Cremers, D., Hong, B.W., Yezzi, A., Soatto, S.: Integral invariants for shape matching. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1602–1618 (2006)

    Article  Google Scholar 

  11. Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73(3), 307–324 (2007)

    Article  Google Scholar 

  12. Stojmenović, M., Žunić, J.: Measuring elongation from shape boundary. J. Math. Imaging Vis. 30(1), 73–85 (2008)

    Article  Google Scholar 

  13. Gautama, T., Mandić, D., Hull, M.V.: A novel method for determining the nature of time series. IEEE Trans. Biomed. Eng. 51(5), 728–736 (2004)

    Article  Google Scholar 

  14. Gautama, T., Mandić, D., Hulle, M.V.: Signal nonlinearity in fMRI: a comparison between BOLD and MION. IEEE Trans. Med. Images 22(5), 636–644 (2003)

    Article  Google Scholar 

  15. Stojmenović, M., Nayak, A., Žunić, J.: Measuring linearity of planar point sets. Pattern Recognit. 41(8), 2503–2511 (2008)

    Article  MATH  Google Scholar 

  16. Žunić, J., Rosin, P.: Measuring linearity of open planar curve segments. Image Vis. Comput. 29(12), 873–879 (2011)

    Article  Google Scholar 

  17. Benhamou, S.: How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J. Theoret. Biol. 229(2), 209–220 (2004)

    Article  MathSciNet  Google Scholar 

  18. El-ghazal, A., Basir, O., Belkasim, S.: Farthest point distance: a new shape signature for Fourier descriptors. Signal Process. Image Commun. 24(7), 572–586 (2009)

    Article  Google Scholar 

  19. Zhang, D., Lu, G.: Study and evaluation of different Fourier methods for image retrieval. Image and Vision Computing 23(1), 3349 (2005)

    Article  Google Scholar 

  20. Valentine, F.: Convex Sets. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  21. Rosin, P.: Measuring sigmoidality. Pattern Recognit. 37(8), 1735–1744 (2004)

    Article  Google Scholar 

  22. Alimoğlu, F., Alpaydin, E.: Combining multiple representations for pen-based handwritten digit recognition. ELEKTRIK: Turk. J. Electr. Eng. Comput. Sci. 9(1), 1–12 (2001)

    Google Scholar 

  23. Žunić, J., Rosin, P.: Rectilinearity measurements for polygons. IEEE Trans. Patt. Anal. Mach. Intell. 25(9), 1193–3200 (2003)

    Article  Google Scholar 

  24. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1, 244–256 (1972)

    Article  Google Scholar 

  25. Pan, F., Keane, M.: A new set of moment invariants for handwritten numeral recognition. In: IEEE International Conference on Image Processing, pp. 154–158 (1994)

    Google Scholar 

  26. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  27. Rosin, P.: Edges: saliency measures and automatic thresholding. Mach. Vis. Appl. 9(4), 139–159 (1997)

    Article  Google Scholar 

  28. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003)

    Article  Google Scholar 

  29. Munich, M., Perona, P.: Visual identification by signature tracking. IEEE Trans. Patt. Anal. Mach. Intell. 25(2), 200–217 (2003)

    Article  Google Scholar 

  30. Aktaş, M., Žunić, J.: A family of shape ellipticity measures for galaxy classification. SIAM J. Imaging Sci. 6(2), 765–781 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Serbian Ministry of Science and Technology/project III44006/OI174008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joviša Žunić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Žunić, J., Pantović, J., Rosin, P.L. (2015). Measuring Linearity of Planar Curves. In: Fred, A., De Marsico, M. (eds) Pattern Recognition Applications and Methods. Advances in Intelligent Systems and Computing, vol 318. Springer, Cham. https://doi.org/10.1007/978-3-319-12610-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12610-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12609-8

  • Online ISBN: 978-3-319-12610-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics