Skip to main content

Feature Discretization with Relevance and Mutual Information Criteria

  • Conference paper
  • First Online:
Pattern Recognition Applications and Methods

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 318))

Abstract

Feature discretization (FD) techniques often yield adequate and compact representations of the data, suitable for machine learning and pattern recognition problems. These representations usually decrease the training time, yielding higher classification accuracy while allowing for humans to better understand and visualize the data, as compared to the use of the original features. This paper proposes two new FD techniques. The first one is based on the well-known Linde-Buzo-Gray quantization algorithm, coupled with a relevance criterion, being able perform unsupervised, supervised, or semi-supervised discretization. The second technique works in supervised mode, being based on the maximization of the mutual information between each discrete feature and the class label. Our experimental results on standard benchmark datasets show that these techniques scale up to high-dimensional data, attaining in many cases better accuracy than existing unsupervised and supervised FD approaches, while using fewer discretization intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.gems-system.org.

  2. 2.

    http://featureselection.asu.edu/datasets.php.

  3. 3.

    http://sci2s.ugr.es/keel/datasets.php.

  4. 4.

    www.cs.waikato.ac.nz/ml/weka.

References

  1. Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5, 537–550 (1994)

    Article  Google Scholar 

  2. Brown, G., Pocock, A., Zhao, M., Luján, M.: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 13, 27–66 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Chiu, D., Wong, A., Cheung, B.: Information discovery through hierarchical maximum entropy discretization and synthesis. In: Proceedings of the Knowledge Discovery in Databases, pp. 125–140 (1991)

    Google Scholar 

  4. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, Hoboken (1991)

    Book  MATH  Google Scholar 

  5. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: International Conference on Machine Learning (ICML), pp. 194–202 (1995)

    Google Scholar 

  6. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of International Joint Conference on Artifficial Intelligence (IJCAI), pp. 1022–1027 (1993)

    Google Scholar 

  7. Ferreira, A., Figueiredo, M.: An unsupervised approach to feature discretization and selection. Pattern Recog. 45, 3048–3060 (2012)

    Article  Google Scholar 

  8. Frank, A., Asuncion, A.: UCI machine learning repository, available at http://archive.ics.uci.edu/ml (2010)

  9. Garcia, S., Luengo, J., Saez, J., Lopez, V., Herrera, F.: A survey of discretization techniques: taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25(4), 734–750 (2013)

    Article  Google Scholar 

  10. Hellman, M.: Probability of error, equivocation, and the Chernoff bound. IEEE Trans. Inf. Theory 16(4), 368–372 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, R., Breitbart, Y., Muoh, C.: Data discretization unification. Knowl. Inf. Syst. 19(1), 1–29 (2009)

    Article  Google Scholar 

  12. Kononenko, I.: On biases in estimating multi-valued attributes. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 1034–1040 (1995)

    Google Scholar 

  13. Kotsiantis, S., Kanellopoulos, D.: Discretization techniques: a recent survey. GESTS Int. Trans. Comput. Sci. Eng. 32(1), 47–58 (2006)

    Google Scholar 

  14. Kurgan, L., Cios, K.: CAIM discretization algorithm. IEEE Trans. Knowl. Data Eng. 16(2), 145–153 (2004)

    Article  Google Scholar 

  15. Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. IEEE Trans. Commun. 28, 84–94 (1980)

    Article  Google Scholar 

  16. Liu, H., Hussain, F., Tan, C., Dash, M.: Discretization: an enabling technique. Data Min. Knowl. Disc. 6(4), 393–423 (2002)

    Article  MathSciNet  Google Scholar 

  17. Principe, J.: Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives, 1st edn. Springer, Heidelberg (2010)

    Book  Google Scholar 

  18. Santhi, N., Vardy, A.: On an improvement over Rényi’s equivocation bound. In: 44-th Annual Allerton Conference on Communication, Control, and Computing (2006)

    Google Scholar 

  19. Tsai, C.-J., Lee, C.-I., Yang, W.-P.: A discretization algorithm based on class-attribute contingency coefficient. Inf. Sci. 178, 714–731 (2008)

    Article  Google Scholar 

  20. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, Morgan Kauffmann, Burlington (2005)

    Google Scholar 

  21. Yang, Y., Webb, G.: Proportional k-interval discretization for naïve-Bayes classifiers. In: 12th European Conference on Machine Learning, (ECML), pp. 564–575 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur J. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ferreira, A.J., Figueiredo, M.A.T. (2015). Feature Discretization with Relevance and Mutual Information Criteria. In: Fred, A., De Marsico, M. (eds) Pattern Recognition Applications and Methods. Advances in Intelligent Systems and Computing, vol 318. Springer, Cham. https://doi.org/10.1007/978-3-319-12610-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12610-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12609-8

  • Online ISBN: 978-3-319-12610-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics