Skip to main content

Human Implicit Intent Discrimination Using EEG and Eye Movement

  • Conference paper
Neural Information Processing (ICONIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8834))

Included in the following conference series:

  • 5127 Accesses

Abstract

In this paper, we propose a new human implicit intent understanding model based on multi-modal information, which is a combination of eye movement data and brain wave signal obtained from eye-tracker and Electroencephalography (EEG) sensors respectively. From the eye movement data, we extract human implicit intention related to features such as fixation count and fixation duration corresponding to the areas of interest (AOI). Also, we analyze the EEG signals based on phase synchrony method. Combining the eye movement and EEG information, we train several classifiers such as support vector machine classifier, Gaussian Mixture Model and Naïve Bayesian, which can successfully identify the human’s implicit intention into two defined categories, i.e. navigational and informational intentions. Experimental results show that the human implicit intention can be better understood using multimodal information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breazeal, C.: Social interactions in HRI: The robot view. IEEE T. Syst. Man. Cy. C: Applications and Reviews 34, 181–186 (2004)

    Article  Google Scholar 

  2. Farrah, W., Kwang-Hyun, P., Dae-jin, K., Jin-Woo, J., Zeungnam, B.: Intention reading towards engineering applications for the elderly and people with disabilities. International Journal of ARM 7, 3–15 (2006)

    Google Scholar 

  3. Jansen, B.J., Booth, D.L., Spink, A.: Determining the informational, navigational, and transactional intent of Web queries. Inform. Process. Manag. 44, 1251–1266 (2008)

    Article  Google Scholar 

  4. Ferreira, A., Celeste, C.W., Cheein, F.A., Bastos-Filho, T.F., Sarcinelli-Filho, M., Carelli, R.: Human-machine interfaces based on EMG and EEG applied to robotic systems. J. Neuroeng. Rehabil. 5, 10 (2008)

    Article  Google Scholar 

  5. Goodrich, M.A., Schultz, A.C.: Human-robot interaction: A survey. Foundations and Trends in Human-Computer Interaction 1, 203–275 (2007)

    Article  MATH  Google Scholar 

  6. Jaimes, A., Sebe, N.: Multimodal human-computer interaction: A survey. Comput. Vis. Image Und. 108, 116–134 (2007)

    Article  Google Scholar 

  7. Jang, Y.M., Mallipeddi, R., Lee, S., Kwak, H.W., Lee, M.: Human intention recognition based on eyeball movement pattern and pupil size variation. Neurocomputing 128, 421–432 (2013)

    Article  Google Scholar 

  8. Sun, J., Sun, X., Tong, S.: Phase synchronization analysis of EEG signals: An evaluation based on surrogate tests. IEEE Trans. Biomed. Eng. 59, 2254–2263 (2012)

    Article  Google Scholar 

  9. Lachaux, J.-P., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring Phase Synchrony in Brain Signals. Hum. Brain Mapp. 8, 194–208 (1999)

    Article  Google Scholar 

  10. Suzuki, H.: Phase relationships of alpha rhythm in man. Jpn. J. Physiol. 24, 569–586 (1974)

    Article  Google Scholar 

  11. Nunez, P.: Electrical Fields of the Brain. Oxford University Press, Mass. (1981)

    Google Scholar 

  12. Gonuguntla, V., Wang, Y., Veluvolu, K.C.: Phase Synchrony in Subject-Specific Reactive Band of EEG for Classification of Motor Imagery Tasks. In: Proceedings of 35th Annual International IEEE EMBS Conference, pp. 2784–2787 (2013)

    Google Scholar 

  13. Park, U., Veluvolu, K.C., Lee, M.: Phase synchrony for human implicit intent differentiation. In: Proceedings of 20th Annual International IEEE ICONIP Conference, pp. 427–433 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Park, U., Mallipeddi, R., Lee, M. (2014). Human Implicit Intent Discrimination Using EEG and Eye Movement. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8834. Springer, Cham. https://doi.org/10.1007/978-3-319-12637-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12637-1_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12636-4

  • Online ISBN: 978-3-319-12637-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics