Skip to main content

Classification of fMRI Data in the NeuCube Evolving Spiking Neural Network Architecture

  • Conference paper
Neural Information Processing (ICONIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8834))

Included in the following conference series:

Abstract

This paper presents a new method and a case study on fMRI spatio- and spectro-temporal data (SSTD) classification with the use of the recently proposed NeuCube architecture [1]. NeuCube is a three dimensional brain-like model of evolving spiking neurons that can be trained with SSTD such as fMRI, EEG and other brain data. This SSTD is mapped, analyzed, modeled and trained, and the result from these processes can be used to better understand the brain processes and to better recognize brain patterns, and thus to extract new knowledge that may reside within the SSTD. From the experimental results we can conclude that the NeuCube architecture is capable of producing significantly more accurate classification results when compared with standard machine learning methods such as SVM and MLP. Moreover, the NeuCube method facilitates deep learning of the SSTD and deeper analysis of the spatio-temporal characteristics and patterns in the fMRI SSTD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kasabov, N.: NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Networks 52, 62–76 (2014)

    Article  Google Scholar 

  2. Lindquist, M.A.: The statistical analysis of fMRI data. Statistical Science 23(4), 439–464 (2008)

    Article  MathSciNet  Google Scholar 

  3. Kasabov, N., Feigin, V., Hou, Z.G., Chen, Y., Liang, L., Krishnamurthy, R., Othman, M., Parmar, P.: Evolving spiking neural networks for personalised modeling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 134, 269–279 (2014)

    Article  Google Scholar 

  4. Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X., Just, M., Newman, S.: Learning to decode cognitive states from brain images. Machine Learning 57(1-2), 145–175 (2004)

    Article  MATH  Google Scholar 

  5. Avesani, P., Hazan, H., Koilis, E., Manevitz, L., Sona, D.: Learning BOLD Response in fMRI by Reservoir Computing. In: 2011 International Workshop on Pattern Recognition in NeuroImaging (PRNI), pp. 57–60. IEEE (2011)

    Google Scholar 

  6. Mourão-Miranda, J., Bokde, A.L., Born, C., Hampel, H., Stetter, M.: Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional MRI data. Neuroimage 28(4), 980–995 (2005)

    Article  Google Scholar 

  7. Mourão-Miranda, J., Friston, K.J., Brammer, M.: Dynamic discrimination analysis: A spatial–temporal SVM. Neuroimage 36(1), 88–99 (2007)

    Article  Google Scholar 

  8. Ng, B., Abugharbieh, R.: Modeling spatiotemporal structure in fMRI brain decoding using generalized sparse classifiers. In: 2011 International Workshop on Pattern Recognition in NeuroImaging (PRNI), pp. 65–68. IEEE (2011)

    Google Scholar 

  9. Kasabov, N., Dhoble, K., Nuntalid, N., Indiveri, G.: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition. Neural Networks 41, 188–201 (2013)

    Article  Google Scholar 

  10. Delbruck, T.: jAER open source project (2007), http://jaer.wiki.sourceforge.net

  11. Lichtsteiner, P., Delbruck, T.: A 64×64 AER logarithmic temporal derivative silicon retina. Research in Microelectronics and Electronics 2, 202–205 (2005)

    Google Scholar 

  12. Loiselle, S., Rouat, J., Pressnitzer, D., Thorpe, S.: Exploration of rank order coding with spiking neural networks for speech recognition. In: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN 2005), vol. 4, pp. 2076–2080 (2005)

    Google Scholar 

  13. Nuntalid, N., Dhoble, K., Kasabov, N.: EEG classification with BSA spike encoding algorithm and evolving probabilistic spiking neural network. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part I. LNCS, vol. 7062, pp. 451–460. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Schliebs, S., Kasabov, N.: Evolving spiking neural network—A survey. Evolving Systems 4(2), 87–98 (2013)

    Article  Google Scholar 

  15. Mohemmed, A., Schliebs, S., Kasabov, N.: SPAN: A neuron for precise-time spike pattern association. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol. 7063, pp. 718–725. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. StarPlus fMRI data, http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/

  17. Talairach, J., Tournoux, P.: Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: An approach to cerebral imaging (1988)

    Google Scholar 

  18. Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N.: Training spiking neural networks to associate spatio-temporal input-output spike patterns. Neurocomputing 107, 3–10 (2013), doi:10.1016/j.neucom.2012.08.034

    Article  Google Scholar 

  19. Platel, M.D., Schliebs, S., Kasabov, N.: Quantum-inspired evolutionary algorithm: A multimodel EDA. IEEE Transactions on Evolutionary Computation 13(6), 1218–1232 (2009)

    Article  Google Scholar 

  20. Hamed, H.N.A., Kasabov, N., Shamsuddin, S.M.: Probabilistic evolving spiking neural network optimization using dynamic quantum-inspired particle swarm optimization. Australian Journal of Intelligent Information Processing Systems 11(1) (2010)

    Google Scholar 

  21. Khan, M.M., Lester, D.R., Plana, L.A., Rast, A., Jin, X., Painkras, E., Furber, S.B.: SpiNNaker: Mapping neural networks onto a massively-parallel chip multiprocessor. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008 (IEEE World Congress on Computational Intelligence), pp. 2849–2856. IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Murli, N., Kasabov, N., Handaga, B. (2014). Classification of fMRI Data in the NeuCube Evolving Spiking Neural Network Architecture. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8834. Springer, Cham. https://doi.org/10.1007/978-3-319-12637-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12637-1_53

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12636-4

  • Online ISBN: 978-3-319-12637-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics