Skip to main content

Significance of Non-edge Priors in Gene Regulatory Network Reconstruction

  • Conference paper
Neural Information Processing (ICONIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8834))

Included in the following conference series:

  • 4827 Accesses

Abstract

It is well known that incorporating prior knowledge improves gene regulatory network reconstruction from data. Two types of prior knowledge can be given for the gene regulatory network inference - known interactions (edge priors) and known absence of interactions (non-edge priors). However, previous studies have focused mainly on edge priors. This paper shows that the edge priors give only limited improvement. Moreover, non-edge priors are crucial for better overall performance and their effect dominates edge priors at larger data samples. The studies are carried out on two real networks and a computationally tractable synthetic network, using Bayesian network framework. Further, a method to obtain large numbers of non-edge priors for real gene regulatory networks is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, M., et al.: Gene Ontology: Tool for the Unification of Biology. Nature Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  2. de Campos, L.M.: A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests. J. Mach. Learn. Res. 7, 2149–2187 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Cantone, I., et al.: A Yeast Synthetic Network for In-vivo Assessment of Reverse-Engineering and Modeling Approaches. Cell 137(1), 172–181 (2009)

    Article  Google Scholar 

  4. De Smet, R., Marchal, K.: Advantages and Limitations of Current Network Inference Methods. Nat. Rev. Micro 8(10), 717–729 (2010)

    Google Scholar 

  5. Friedman, N.: Inferring Cellular Networks Using Probabilistic Graphical Models. Science 303(5659), 799–805 (2004)

    Article  Google Scholar 

  6. Gao, S., Wang, X.: Quantitative Utilization of Prior Biological Knowledge in the Bayesian Network Modeling of Gene Expression Data. BMC Bioinformatics 12(1), 359 (2011)

    Article  Google Scholar 

  7. Isci, S., Dogan, H., Ozturk, C., Otu, H.H.: Bayesian Network Prior: Network Analysis of Biological Data Using External Knowledge. Bioinformatics 30(6), 860–867 (2014)

    Article  Google Scholar 

  8. Le Phillip, P., Bahl, A., Ungar, L.H.: Using Prior Knowledge to Improve Genetic Network Reconstruction from Microarray Data. In Silico Biology 4(3), 335–353 (2004)

    Google Scholar 

  9. Magrane, M.: UniProt Consortium : UniProt Knowledgebase: A Hub of Integrated Protein Data. Database (Oxford) (2011)

    Google Scholar 

  10. Murphy, K.P.: The Bayes Net Toolbox for Matlab. Computing Science and Statistics 33 (2001)

    Google Scholar 

  11. Ooi, C.H., Chetty, M., Teng, S.W.: Differential prioritization in feature selection and classifier aggregation for multiclass microarray datasets. Data Mining and Knowledge Discovery 14(3), 329–366 (2007)

    Article  MathSciNet  Google Scholar 

  12. Ronen, M., Rosenberg, R., Shraiman, B.I., Alon, U.: Assigning Numbers to the Arrows: Parameterizing a Gene Regulation Network by Using Accurate Expression Kinetics. Proc. Natl. Acad. Sci. U.S.A. 99(16), 10555–10560 (2002)

    Article  Google Scholar 

  13. Steele, E., Tucker, A., ’t Hoen, P.A.C., Schuemie, M.J.: Literature-based Priors for Gene Regulatory Networks. Bioinformatics 25(14), 1768–1774 (2009)

    Article  Google Scholar 

  14. Vinh, N.X., Chetty, M., Coppel, R., Wangikar, P.P.: GlobalMIT: Learning Globally Optimal Dynamic Bayesian Network with the Mutual Information Test Criterion. Bioinformatics 27(19), 2765–2766 (2011)

    Article  Google Scholar 

  15. Vinh, N.X., Chetty, M., Coppel, R., Wangikar, P.P.: Issues Impacting Genetic Network Reverse Engineering Algorithm Validation Using Small Networks. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1824(12), 1434–1441 (2012)

    Article  Google Scholar 

  16. Wilczyski, B., Dojer, N.: BNFinder: Exact and Efficient Method for Learning Bayesian Networks. Bioinformatics 25(2), 286–287 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nair, A., Chetty, M., Wangikar, P.P. (2014). Significance of Non-edge Priors in Gene Regulatory Network Reconstruction. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8834. Springer, Cham. https://doi.org/10.1007/978-3-319-12637-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12637-1_56

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12636-4

  • Online ISBN: 978-3-319-12637-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics