Skip to main content

Deep Learning of Multifractal Attributes from Motor Imagery Induced EEG

  • Conference paper
Neural Information Processing (ICONIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8834))

Included in the following conference series:

Abstract

Electroencephalogram (EEG) is an effective metric to monitor or measure human brain activities. Another advantage for EEG utilization is noninvasive, and is not harmful to subjects. However, this leads to two drawbacks: low signal-to-noise ratio and non-stationarity. In order to extract useful features contained in the EEG, multifractal attributes were explored in this paper. A few attributes were utilized to analyze the EEG recorded during motor imagery tasks. Then, we built a deep learning model based on denoising autoencoder to recognize different motor imagery tasks. From the results, we can find that 1) Motor imagery induced EEG is of multifractal attributes, 2) multifractal spectrum D(h) and the statistics cp based on cumulants can reflect difference between different motor imagery tasks, so they can be adopted as features for classification. 3) A deep network with initialization by denoising autoencoder is suitable to learn multifractal attributes extracted from EEG. The classification accuracies demonstrated that the proposed method is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mandelbrot, B.B.: How Long Is the Coast of Britain. Science 156(3775), 636–638 (1967)

    Article  Google Scholar 

  2. Dutta, S., Ghosh, D., Samanta, S., Dey, S.: Multifractal Parameters as an Indication of Different Physiological and Pathological States of the Human Brain. Physica A 396, 155–163 (2014)

    Article  Google Scholar 

  3. Oczeretko, E., Juczewska, M., Kasacka, I.: Fractal Geometric Analysis of Lung Cancer Angiogenic Patterns. Folia Histochem. Cytobiol. 39, 75–76 (2000)

    Google Scholar 

  4. Zook, J.M., Iftekharuddin, K.M.: Statistical Analysis of Fractal-based Brain Tumor Detection Algorithms. Magn. Reson. Imaging 23(5), 671–678 (2005)

    Article  Google Scholar 

  5. Li, J., Liang, J., Zhao, Q., Li, J., Hong, K., Zhang, L.: Design of Assistive Wheelchair System Directly Steered by Human Thoughts. Int. J. Neural Syst. 23(3), 1350013 (2013)

    Article  Google Scholar 

  6. Pfurtscheller, G., Muller, G.R., Pfurtscheller, J., Gerner, H.J., Rupp, R.: ‘Thought’-Control of Functional Electrical Stimulation to Restore Hand Grasp in a Patient with Tetraplegia. Neurosci. Lett. 351(1), 33–36 (2003)

    Article  Google Scholar 

  7. Li, J., Zhang, L.: Active Training Paradigm for Motor Imagery BCI. Exp. Brain Res. 219(2), 245–254 (2012)

    Article  Google Scholar 

  8. Li, J., Wang, Y., Zhang, L., Jung, T.P.: Combining ERPs and EEG Spectral Features for Decoding Intended Movement Direction. In: 34th Annual International Conference of the IEEE EMBS, San Diego, August 28-September 1, pp. 1769–1772 (2012)

    Google Scholar 

  9. Brodu, N., Lotte, F., Lécuyer, A.: Exploring Two Novel Features for EEG-based Brain–Computer Interfaces: Multifractal Cumulants and Predictive Complexity. Neurocomputing 79, 87–94 (2012)

    Article  Google Scholar 

  10. Li, J., Liu, Y., Lu, Z., Zhang, L.: A Competitive Brain Computer Interface: Multi-person Car Racing System. In: 35th Annual International Conference of the IEEE EMBS, Osaka, Japan, July 3-7, pp. 2200–2203 (2013)

    Google Scholar 

  11. Wendt, H., Abry, P., Jaffard, S.: Bootstrap for Empirical Multifractal Analysis. IEEE Signal Process. Mag. 24(4), 38–48 (2007)

    Article  Google Scholar 

  12. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Wendt, H., Abry, P.: Multifractality Tests Using Bootstrapped Wavelet Leaders. IEEE Trans. Signal Process. 55(10), 4811–4820 (2007)

    Article  MathSciNet  Google Scholar 

  14. Lopes, R., Betrouni, N.: Fractal and Multifractal Analysis: A Review. Med. Image Anal. 13(4), 634–649 (2009)

    Article  Google Scholar 

  15. Li, J., Struzik, Z., Zhang, L., Cichocki, A.: Spectral Power Estimation for Unevenly Spaced Motor Imagery Data. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013, Part I. LNCS, vol. 8226, pp. 168–175. Springer, Heidelberg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, J., Cichocki, A. (2014). Deep Learning of Multifractal Attributes from Motor Imagery Induced EEG. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8834. Springer, Cham. https://doi.org/10.1007/978-3-319-12637-1_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12637-1_63

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12636-4

  • Online ISBN: 978-3-319-12637-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics