Abstract
Adaptive filters are now becoming increasingly studied for their suitability in application to complex and non-stationary signals. Many adaptive filters utilise a reference input, that is used to form an estimate of the noise in the target signal. In this paper we discuss the application of adaptive filters for high electromyography contaminated electroencephalography data. We propose the use of multiple referential inputs instead of the traditional single input. These references are formed using multiple EMG sensors during an EEG experiment, each reference input is processed and ordered through firstly determining the Pearson’s r-squared correlation coefficient, from this a weighting metric is determined and used to scale and order the reference channels according to the paradigm shown in this paper. This paper presents the use and application of the Adaptive-Multi-Reference (AMR) Least Means Square adaptive filter in the domain of electroencephalograph signal acquisition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Goncharova, I., McFarland, D., Vaughan, T., Wolpaw, J.: Emg contamination of eeg: spectral and topographical characteristics. Clinical Neurophysiology 114(9), 1580–1593 (2003)
Luca, C.J.D., Gilmore, L.D., Kuznetsov, M., Roy, S.H.: Filtering the surface emg signal: Movement artifact and baseline noise contamination. Journal of Biomechanics 43(8), 1573–1579 (2010)
Jung, T., Makeig, S., Humphries, C., Lee, T., Mckeown, M., Iragui, V., Sejnowski, T.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37(02), 163–178 (2000)
Barlow, J.S.: Artifact processing (rejection and minimization) in eeg data processing. In: Handbook of Electroencephalography and Clinical Neurophysiology, vol. 2, pp. 15–62 (1986)
Vigon, L., Saatchi, M.R., Mayhew, J.E.W., Fernandes, R.: Quantitative evaluation of techniques for ocular artefact filtering of eeg waveforms. IEE Proceedings on Science, Measurement and Technology 147(5), 219–228 (2000)
Junfeng, G., Pan, L., Yong, Y., Pei, W.: Online emg artifacts removal from eeg based on blind source separation. International Asia Conference on Informatics in Control, Automation and Robotics 1, 28–31 (2010)
Delorme, A., Sejnowski, T., Makeig, S.: Enhanced detection of artifacts in eeg data using higher-order statistics and independent component analysis. NeuroImage 34(4), 1443–1449 (2007)
Schlogl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., Pfurtscheller, G.: A fully automated correction method of eog artifacts in eeg recordings. Clinical Neurophysiology 118(1), 98–104 (2007)
Kher, R.K., Thakker, B.: Eeg signal enhancement and estimation using adaptive filtering. International Journal of Engineering 2(1) (2013)
He, P., Wilson, G., Russell, C.: Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Medical and Biological Engineering and Computing 42(3), 407–412 (2004)
Molla, M.K.I., Islam, R., Tanaka, T., Rutkowski, T.M., et al.: Artifact suppression from eeg signals using data adaptive time domain filtering. Neurocomputing 97, 297–308 (2012)
Stern, J.M.: Atlas of EEG Patterns. 2 edn. Lippincott Williams & Wilkin (2013)
Patrick Berg, B.G.: Besa simulator v1.0. Electronic (June 2013)
CompuMedics/NeuroScan: Synampsrt technical specifications (2012)
Gray, H., Lewis, W.H.: Anatomy of the Human Body. Philadelphia: Lea and Febiger, 1918 Bartleby, 2000 (1825-1861)
Jasper, H.: Report of the committee on methods of clinical examination in electroencephalography. Electroenceph. Clin. Neurophysiol. 10, 370–375 (1958)
Wonnacott, T.H., Wonnacott, R.J.: Introductory statistics. vol. 19690. Wiley, New York (1972)
Billings, S.A.: Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. John Wiley & Sons (2013)
Taheri, B.A., Knight, R.T., Smith, R.L.: A dry electrode for eeg recording. Electroencephalography and Clinical Neurophysiology 90(5), 376–383 (1994)
Lee, K., Gan, W.: Improving convergence of the nlms algorithm using constrained subband updates. IEEE Signal Processing Letters 11(9), 736–739 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Nyhof, L., Hettiarachchi, I., Mohammed, S., Nahavandi, S. (2014). Adaptive-Multi-Reference Least Means Squares Filter. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8836. Springer, Cham. https://doi.org/10.1007/978-3-319-12643-2_64
Download citation
DOI: https://doi.org/10.1007/978-3-319-12643-2_64
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12642-5
Online ISBN: 978-3-319-12643-2
eBook Packages: Computer ScienceComputer Science (R0)