Skip to main content

Understanding Dynamic Environments with Fuzzy Perception

  • Conference paper
Neural Information Processing (ICONIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8836))

Included in the following conference series:

  • 4405 Accesses

Abstract

This paper addresses the problem of dealing with different kinds of dynamic obstacles influencing a place recognition task. We improve an existing approach using independent Marcov chain grid maps (iMac). Furthermore, we add a fuzzy classification to exploit the iMac estimation to refine the likelihood field estimation. We can show that the proposed method increases the performance of place recognition, while still being a compact, interpretable framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anguelov, D., Biswas, R., Koller, D., Limketkai, B., Thrun, S.: Learning hierarchical object maps of non-stationary environments with mobile robots. In: UAI, pp. 10–17 (2002)

    Google Scholar 

  2. Arbuckle, D., Howard, A., Mataric, M.: Temporal occupancy grids: a method for classifying the spatio-temporal properties of the environment. In: IROS, pp. 409–414 (2002)

    Google Scholar 

  3. Berthold, M.R.: Mixed fuzzy rule formation. Int. J. Appr. Reas. 32(2), 67–84 (2003)

    Article  MATH  Google Scholar 

  4. Biber, P., Duckett, T.: Dynamic maps for long-term operation of mobile service robots. In: RSS, pp. 17–24 (2005)

    Google Scholar 

  5. Biswas, R., Limketkai, B., Sanner, S., Thrun, S.: Towards object mapping in dynamic environments with mobile robots. In: IROS, pp. 1014–1019 (2002)

    Google Scholar 

  6. Cingolani, P., Alcalá-Fdez, J.: jfuzzylogic: a robust and flexible fuzzy-logic inference system language implementation. In: FUZZ-IEEE, pp. 1–8 (2012)

    Google Scholar 

  7. Cingolani, P., Alcalá-Fdez, J.: jfuzzylogic: a java library to design fuzzy logic controllers according to the standard for fuzzy control programming. Int. J. CI Sys. 6(sup1), 61–75 (2013)

    Google Scholar 

  8. Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. Journal of Artificial Intelligence Research 11, 391–427 (1999)

    MATH  Google Scholar 

  9. Gabriel, T.R., Berthold, M.R.: Influence of fuzzy norms and other heuristics on mixed fuzzy rule formation. Int. J. Appr. Reas. 35(2), 195–202 (2004)

    Article  MATH  Google Scholar 

  10. Hähnel, D., Triebel, R., Burgard, W., Thrun, S.: Map building with mobile robots in dynamic environments. In: ICRA, pp. 1557–1563 (2003)

    Google Scholar 

  11. Krajník, T., Fentanes, J.P., Cielniak, G., Dondrup, C., Duckett, T.: Spectral analysis for long-term robotic mapping. In: ICRA (in press, 2014)

    Google Scholar 

  12. Kucner, T., Saarinen, J., Magnusson, M., Lilienthal, A.J.: Conditional transition maps: Learning motion patterns in dynamic environments. In: IROS, pp. 1196–1201 (2013)

    Google Scholar 

  13. Meyer-Delius, D., Beinhofer, M., Burgard, W.: Occupancy grid models for robot mapping in changing environments. In: AAAI, pp. 2024–2030 (2012)

    Google Scholar 

  14. Meyer-Delius, D., Hess, J., Grisetti, G., Burgard, W.: Temporary maps for robust localization in semi-static environments. In: IROS, pp. 5750–5755 (2010)

    Google Scholar 

  15. Mitsou, N.C., Tzafestas, C.S.: Temporal occupancy grid for mobile robot dynamic environment mapping. In: MED, pp. 1–8 (2007)

    Google Scholar 

  16. Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: ICRA, pp. 116–121 (1985)

    Google Scholar 

  17. Pfaff, P., Plagemann, C., Burgard, W.: Improved likelihood models for probabilistic localization based on range scans. In: IROS, pp. 2192–2197. IEEE (2007)

    Google Scholar 

  18. Saarinen, J., Andreasson, H., Lilienthal, A.J.: Independent markov chain occupancy grid maps for representation of dynamic environment. In: IROS, pp. 3489–3495 (2012)

    Google Scholar 

  19. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press (2005)

    Google Scholar 

  20. Tipaldi, G.D., Meyer-Delius, D., Beinhofer, M., Burgard, W.: Lifelong localization and dynamic map estimation in changing environments. In: ICSC (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bahrmann, F., Hellbach, S., Keil, S., Böhme, HJ. (2014). Understanding Dynamic Environments with Fuzzy Perception. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8836. Springer, Cham. https://doi.org/10.1007/978-3-319-12643-2_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12643-2_67

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12642-5

  • Online ISBN: 978-3-319-12643-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics