Skip to main content

A Region Growing Algorithm for Detecting Critical Nodes

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8881))

Abstract

In this paper we apply a region growing bicriteria approximation algorithm of [5] for determining solutions to the critical node detection problem. This problem takes as input a number \(K\) and a connected, unweighted graph, and has the goal of selecting \(\le K\) vertices to remove such that the residual network has minimum pairwise connectivity. This problem has numerous applications, including those in network security, disease mitigation, marketing and antiterrorism. The algorithm achieves an \(\mathcal {O}(\log n)\) approximation on the number of vertices needed to attain an \(\mathcal {O}(1)\) bound on the objective function. Four random graph models and four real-world networks from different application areas are used to demonstrate that the algorithm performs within the predicted bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Addis, B., Di Summa, M., Grosso, A.: Complexity results and polynomial algorithms for the case of bounded treewidth. Discrete Appl. Math. 161(16–17), 2349–2360 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arulselvan, A., Commander, C.W., Pardalos, P.M., Shylo, O.: Managing network risk via critical node identification. In: Gulpinar, N., Rustem, B. (eds.) Risk Management in Telecommunication Networks. Springer, Heidelberg (2011)

    Google Scholar 

  4. Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses and the sum-of-squares partition problem. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 43–52. Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  5. Chen, P., David, M., Kempe, D.: Better vaccination strategies for better people. In: Proceedings of the 11th ACM Conference on Electronic Commerce, pp. 179–188. ACM (2010)

    Google Scholar 

  6. Di Summa, M., Grosso, A., Locatelli, M.: Complexity of the critical node problem over trees. Comput. Oper. Res. 38(12), 1766–1774 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Di Summa, M., Grosso, A., Locatelli, M.: Branch and cut algorithms for detecting critical nodes in undirected graphs. Comput. Optim. Appl. 53(3), 649–680 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network vulnerability: hardness and approximation. IEEE/ACM Trans. Netw. 20(2), 609–619 (2012)

    Article  Google Scholar 

  9. Garg, N., Vazirani, V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. Comput. 25, 698–707 (1993)

    MathSciNet  Google Scholar 

  10. Krebs, V.: Uncloaking terrorist networks, first monday (2001). http://www.orgnet.com/hijackers.html

  11. Leighton, T., Rao, S.: An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In: Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pp. 422–431. IEEE Computer Society (1988)

    Google Scholar 

  12. Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)

    Google Scholar 

  13. Venkatesan, K., Rual, J.F., Vazquez, A., Stelzl, U., Lemmens, I., Hirozane-Kishikawa, T., Hao, T., Zenkner, M., Xin, X., Goh, K., Yildirim, M.A., Simonis, N., Heinzmann, K., Gebreab, F., Sahalie, J.M., Cevik, S., Simon, C., de Smet, A., Dann, E., Smolyar, A., Vinayagam, A., Yu, H., Szeto, D., Borick, H., Dricot, A., Klitgord, N., Murray, R., Lin, C., Lalowski, M., Timm, J., Rau, K., Boone, C., Braun, P., Cusick, M., Roth, F., Hill, D., Tavernier, J., Wanker, E., Barabasi, A.L., Vidal, M.: An empirical framework for binary interactome mapping. Nat. Methods 6(1), 83–90 (2009)

    Article  Google Scholar 

  14. Ventresca, M.: Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. Comput. Oper. Res. 39(11), 2763–2775 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ventresca, M., Aleman, D.: A derandomized approximation algorithm for the critical node detection problem. Comput. Oper. Res. 43, 261–270 (2014)

    Article  MathSciNet  Google Scholar 

  16. Ventresca, M., Aleman, D.: A randomized algorithm with local search for containment of pandemic disease spread. Comput. Oper. Res. 48, 11–19 (2014)

    Article  MathSciNet  Google Scholar 

  17. Veremyev, A., Boginski, V., Pasiliao, E.L.: Exact identification of critical nodes in sparse networks via new compact formulations. Optim. Lett. 8(4), 1245–1259 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: An integer programming framework for critical elements detection in graphs. J. Comb. Optim. 28(1), 233–273 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Veremyev, A., Boginski, V., Pasiliao, E.L.: Exact identification of critical nodes in sparse networks via new compact formulations. Optim. Lett. 8, 1245–1259 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)

    Article  Google Scholar 

  21. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, New York (2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Ventresca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ventresca, M., Aleman, D. (2014). A Region Growing Algorithm for Detecting Critical Nodes. In: Zhang, Z., Wu, L., Xu, W., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2014. Lecture Notes in Computer Science(), vol 8881. Springer, Cham. https://doi.org/10.1007/978-3-319-12691-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12691-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12690-6

  • Online ISBN: 978-3-319-12691-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics