Skip to main content

Approximation Algorithm for the Minimum Connected \(k\)-Path Vertex Cover Problem

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8881))

  • 1620 Accesses

Abstract

A vertex subset \(C\) of a connected graph \(G\) is called a connected \(k\)-path vertex cover (\(CVCP_k\)) if every path of length \(k-1\) contains at least one vertex from \(C\), and the subgraph of \(G\) induced by \(C\) is connected. This concept has its background in the field of security and supervisory control. A variation, called \(CVCC_k\), asks every connected subgraph on \(k\) vertices contains at least one vertex from \(C\). The \(MCVCP_k\) (resp. \(MCVCC_k\)) problem is to find a \(CVCP_k\) (resp. \(CVCC_k\)) with the minimum cardinality. In this paper, we give a \(k\)-approximation algorithm for \(MCVCP_k\) under the assumption that the graph has girth at least \(k\). Similar algorithm on \(MCVCC_k\) also yields approximation ratio \(k\), which is valid for any connected graph (without additional conditions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)

    Book  MATH  Google Scholar 

  2. Bresar, B., Kardos, F., Katrenic, J., Semanisin, G.: Minimum \(k\)-path vertex cover. Discrete Appl. Math. 159, 1189–1195 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dinur, T., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162, 439–485 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kardos̆, F., Katrenic̆, J., Schiermeyer, I.: On computing the minimum 3-path vertex cover and dissociation number of graphs. Theor. Comput. Sci. 412, 7009–7017 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Li, Y., Tu, J.: A 2-approximation algorithm for the vertex cover \(P_4\) problem in cubic graphs. Int. J. Comput. Math. (published online, 2014). doi:10.1080/00207160.2014.881476

  6. Novotný, M.: Design and analysis of a generalized canvas protocol. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 106–121. Springer, Heidelberg (2010)

    Google Scholar 

  7. Liu, X., Lu, H., Wang, W., Wu, W.: PTAS for the minimum \(k\)-path connected vertex cover problem in unit disk graphs. J. Glob. Optim. 56, 449–458 (2008)

    Article  MathSciNet  Google Scholar 

  8. Tu, J., Yang, F.: The vertex cover \(P_{3}\) problem in cubic graphs. Inf. Process. Lett. 113, 481–485 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Tu, J., Zhou, W.: A factor 2 approximation algorithm for the vertex cover \(P_{3}\) problem. Inf. Process. Lett. 111, 683–686 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tu, J., Zhou, W.: A primal-dual approximation algorithm for the vertex cover \(P_{3}\) problem. Theoret. Comput. Sci. 412, 7044–7048 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wu, B., Chao, K.: A note on eccentricities, diameters and radii (2004). www.csie.ntu.edu.tw/kmchao/tree04spr/diameter.pdf

  12. Zhang, Y., Shi, Y., Zhang, Z.: Approximation algorithm for the minimum weight connected \(k\)-subgraph cover problem. Theoret. Comput. Sci. 535, 54–58 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is supported by NSFC (61222201), SRFDP (20126501110001), and Xingjiang Talent Youth Project (2013711011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, X., Zhang, Z., Huang, X. (2014). Approximation Algorithm for the Minimum Connected \(k\)-Path Vertex Cover Problem. In: Zhang, Z., Wu, L., Xu, W., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2014. Lecture Notes in Computer Science(), vol 8881. Springer, Cham. https://doi.org/10.1007/978-3-319-12691-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12691-3_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12690-6

  • Online ISBN: 978-3-319-12691-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics