Abstract
We consider the problem of walking a simple robot in an unknown street. The robot that cannot infer any geometric properties of the street traverses the environment to reach a target \(t\), starting from a point \(s\). The robot has a minimal sensing capability that can only report the discontinuities in the depth information (gaps), and location of the target point once it enters in its visibility region. Also, the robot can only move towards the gaps while moving along straight lines is cheap, but rotation is expensive for the robot. We maintain the location of some gaps in a tree data structure of constant size. The tree is dynamically updated during the movement. Using the data structure, we present an online strategy that generates a search path for the robot with optimal number of turns.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Disser, Y., Ghosh, S.K., Mihalk, M., Widmayer, P.: Mapping a polygon with holes using a compass. Theor. Comput. Sci. (in press, corrected proof) (Available online 18 December 2013)
Fekete, S.P., Mitchell, J.S.B., Schmidt, C.: Minimum covering with travel cost. J. Comb. Optim. 24, 32–51 (2003)
Ghannadpour, S.F., Noori, S., Tavakkoli-Moghaddam, R.: A multi-objective vehicle routing and scheduling problem with uncertainty in customers request and priority. J. Comb. Optim. 28, 414–446 (2012)
Guilamo, L., Tovar, B., LaValle, S.M.: Pursuit-evasion in an unknown environment using gap navigation trees. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robot’s and Systems, (IROS 2004), vol. 4, pp. 3456–3462. IEEE, September 2004
Hammar, M., Nilsson, B.J., Persson, M.: Competitive exploration of rectilinear polygons. Theor. Comput. Sci. 354(3), 367–378 (2006)
Icking, C., Klein, R., Langetepe, E.: An optimal competitive strategy for walking in streets. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 110–120. Springer, Heidelberg (1999)
Katsev, M., et al.: Mapping and pursuit-evasion strategies for a simple wall-following robot. IEEE Trans. Robot. 27(1), 113–128 (2011)
Klein, R.: Walking an unknown street with bounded detour. Comput. Geom. 1(6), 325–351 (1992)
Kumar Ghosh, S., Saluja, S.: Optimal on-line algorithms for walking with minimum number of turns in unknown streets. Comput. Geom. 8(5), 241–266 (1997)
Kumar Ghosh, S.: Computing the visibility polygon from a convex set and related problems. J. Algorithms 12(1), 75–95 (1991)
Lopez-Padilla, R., Murrieta-Cid, R., LaValle, S.M.: Optimal gap navigation for a disc robot. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. STAR, vol. 86, pp. 123–138. Springer, Heidelberg (2013)
Lpez-Ortiz, A., Schuierer, S.: On-line parallel heuristics, processor scheduling and robot searching under the competitive framework. Theor. Comput. Sci. 310(1), 527–537 (2004)
Mitchell, J.S., Rote, G., Woeginger, G.: Minimum-link paths among obstacles in the plane. Algorithmica 8(1–6), 431–459 (1998)
Sachs, S., LaValle, S.M., Rajko, S.: Visibility-based pursuit-evasion in an unknown planar environment. Int. J. Robot. Res. 23(1), 3–26 (2004)
Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: from local visibility to global geometry. Int. J. Robot. Res. 27(9), 1055–1067 (2008)
Tabatabaei, A., Ghodsi, M.: Walking in streets with minimal sensing. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 361–372. Springer, Heidelberg (2013)
Tan, X., Bo, J.: Minimization of the maximum distance between the two guards patrolling a polygonal region. Theor. Comput. Sci. 532, 73–79 (2014)
Tovar, B., Murrieta-Cid, R., LaValle, S.M.: Distance-optimal navigation in an unknown environment without sensing distances. IEEE Trans. Robot. 23(3), 506–518 (2007)
Tovar, B., LaValle, S.M., Murrieta, R.: Optimal navigation and object finding without geometric maps or localization. In Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’03, vol. 1, pp. 464–470. IEEE, September 2003
Xu, Y., et al.: The canadian traveller problem and its competitive analysis. J. Comb. Optim. 18(2), 195–205 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Tabatabaei, A., Ghodsi, M. (2014). Optimal Strategy for Walking in Streets with Minimum Number of Turns for a Simple Robot. In: Zhang, Z., Wu, L., Xu, W., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2014. Lecture Notes in Computer Science(), vol 8881. Springer, Cham. https://doi.org/10.1007/978-3-319-12691-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-12691-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12690-6
Online ISBN: 978-3-319-12691-3
eBook Packages: Computer ScienceComputer Science (R0)