Skip to main content

Evaluation of LBP and HOG Descriptors for Clothing Attribute Description

  • Conference paper
  • First Online:
Video Analytics for Audience Measurement (VAAM 2014)

Abstract

In this work an experimental study about the capability of the LBP, HOG descriptors and color for clothing attribute classification is presented. Two different variants of the LBP descriptor are considered, the original LBP and the uniform LBP. Two classifiers, Linear SVM and Random Forest, have been included in the comparison because they have been frequently used in clothing attributes classification. The experiments are carried out with a public available dataset, the clothing attribute dataset, that has 26 attributes in total. The obtained accuracies are over 75 % in most cases, reaching 80 % for the necktie or sleeve length attributes.

J. Lorenzo: Work partially funded by the Institute SIANI and the Departamento de Informática y Sistemas at ULPGC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Borras, A., Tous, F., Llados, J., Vanrell, M.: High-level clothes description based on colour-texture and structural features. In: 1st Iberian Conference on Pattern Recognition and Image Analysis IbPRIA (2003)

    Google Scholar 

  2. Bossard, L., Dantone, M., Leistner, C., Wengert, C., Quack, T., Gool, L.V.: Apparel classification with style. In: 11th Asian Conference on Computer Vision. Daejeon, Korea, November 5–9 2012

    Google Scholar 

  3. Chen, H., Gallagher, A., Girod, B.: Describing clothing by semantic attributes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 609–623. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Chen, J.L., Chen, W.Y., Chen, I.K., Chi, C.Y., Chen, J.L.: Interactive clothing retrieval system. In: IEEE International Conference on Consumer Electronics (ICCE) (2014)

    Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Schmid, C., Soatto, S., Tomasi, C. (eds.) International Conference on Computer Vision and Pattern Recognition, INRIA Rhône-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-38334, vol. 2, pp. 886–893, June 2005

    Google Scholar 

  6. Gallagher, A., Chen, T.: Clothing cosegmentation for recognizing people. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2008)

    Google Scholar 

  7. Kalantidis, Y., Kennedy, L., Li, L.J.: Getting the look: clothing recognition and segmentation for automatic product suggestions in everyday photos. In: International Conference on Multimedia Retrieval (ICMR) (2013)

    Google Scholar 

  8. Manfredi, M., Grana, C., Calderara, S.: A complete system for garment segmentation and color classification. Mach. Vis. Appl. 25(4), 955–969 (2014)

    Article  Google Scholar 

  9. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29, 51–59 (1996)

    Article  Google Scholar 

  10. Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns. Springer, Heidelberg (2011)

    Book  Google Scholar 

  11. Liu, S., Feng, J., Domokos, C., Xu, H., Huang, J., Hu, Z., Yan, S.: Fashion parsing with weak color-category labels. IEEE Trans. Multimedia 16, 253–265 (2014)

    Article  Google Scholar 

  12. Satta, R., Pala, F., Fumera, G., Roli, F.: Person Re-Identification. In: Chapter People Search with Textual Queries About Clothing Appearance Attributes, pp. 371–390. Springer, Heidelberg (2014)

    Google Scholar 

  13. Song, Z., Wang, M., Hua, X.S., Yan, S.: Predicting occupation via human clothing and contexts. In: IEEE International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  14. Weber, M., Buml, M., Stiefelhagen, R.: Part-based clothing segmentation for person retrieval. In: International Conference on Advanced Video and Signal-based Surveillance (AVSS) (2011)

    Google Scholar 

  15. Yamaguchi, K., Kiapour, M.H., Ortiz, L.E., Berg, T.L.: Parsing clothing in fashion photographs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  16. Yang, M., Yu, K.: Real-time clothing recognition in surveillance videos. In: 18th IEEE International Conference on Image Processing (2011)

    Google Scholar 

  17. Yang, Y., Ramanan, D.: Articulated pose estimation using flexible mixtures of parts. In: 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Lorenzo-Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lorenzo-Navarro, J., Castrillón, M., Ramón, E., Freire, D. (2014). Evaluation of LBP and HOG Descriptors for Clothing Attribute Description. In: Distante, C., Battiato, S., Cavallaro, A. (eds) Video Analytics for Audience Measurement. VAAM 2014. Lecture Notes in Computer Science(), vol 8811. Springer, Cham. https://doi.org/10.1007/978-3-319-12811-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12811-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12810-8

  • Online ISBN: 978-3-319-12811-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics