Skip to main content

Cross Media Recommendation in Digital Library

  • Conference paper
The Emergence of Digital Libraries – Research and Practices (ICADL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8839))

Included in the following conference series:

Abstract

Rapidly increasing volumes of heterogeneous media digital contents are produced into the digital library by the forms of the digital books, videos, images, etc. However, traditional recommendation approaches in the digital library cannot support the potential semantic connections across different types of media data. In this paper, a cross-media recommendation algorithm for the digital library is proposed, in which the retrieved items may come from different data sources, and the results do not need to be of the same media type the user ever read or tagged. Firstly, a fused user-item-feature tensor is used to represent the cross-media data set. Then the item-context latent space and item-user rating latent space are reconstructed by TUCKER based tensor decomposition. And the structural grouping sparsity approach is used to select the feature groups and the subset of homogeneous features in one group, which can deal with the difficulty of sparse and high dimension of the big feature matrix. Finally, the Top-n items are recommended according to the prediction probability estimated. Experiments conducted on a cross-media dataset based on China Academic Digital Associative Library (CADAL). The performances evaluation is based on the recall precision and diversity score. The experiment results show that our approach has good recommendation accuracy as well as good diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wu, F., Lu, X., Zhang, Z., Yan, S., Rui, Y., Zhuang, Y.: Cross-media semantic representation via bi-directional learning to rank. In: Proceedings of the 21st ACM International Conference on Multimedia (MM 2013), pp. 877–886. ACM, New York (2013)

    Chapter  Google Scholar 

  2. Zhuang, Y., Yang, Y., Wu, F.: Mining semantic correlation of heterogeneous multimedia data for cross-media retrieval. IEEE Transactions on Multimedia 10(2), 221–229 (2008)

    Article  Google Scholar 

  3. Ricci, F., Rokach, L., Shapira, B., Kantor, P.: Recommender Systems Handbook. Springer (2010)

    Google Scholar 

  4. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems Handbook. Springer (2010)

    Google Scholar 

  6. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  7. Funk, S.: Netflix update: Try this at home (2006), http://sifter.org/?simon/journal/20061211.html

  8. Wu, F., Han, Y.H., Liu, X., Shao, J., Zhuang, Y.T., Zhang, Z.F.: The Heterogeneous feature selection with structural sparsity for multimedia annotation and hashing: A survey. International Journal of Multimedia Information Retrieval 1(1), 3–15 (2012)

    Article  Google Scholar 

  9. Yuan, Z., Yu, K., Zhang, J., Pan, H.: Structural context-aware cross media recommendation. In: Lin, W., Xu, D., Ho, A., Wu, J., He, Y., Cai, J., Kankanhalli, M., Sun, M.-T. (eds.) PCM 2012. LNCS, vol. 7674, pp. 790–800. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1996)

    Article  Google Scholar 

  11. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multimodal factor analysis. University of California at Los Angeles (1970)

    Google Scholar 

  12. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Statistical Approachology) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Approachological) 68(1), 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wu, F., Han, Y., Tian, Q., Zhuang, Y.: Multi-label boosting for image annotation by structural grouping sparsity. In: Proceedings of the 2010 ACM International Conference on Multimedia (ACMMM), New York, NY, USA, pp. 15–24 (2010)

    Google Scholar 

  15. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook, 1st edn. Springer (2011)

    Google Scholar 

  16. Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and evaluating choices in a virtual community of use. In: Proc. of the SIGCHI Conference on Human Factors in Computing Systems (CHI 1995), pp. 194–201 (1995)

    Google Scholar 

  17. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Communications of the ACM 35(12), 61–70 (1992)

    Article  Google Scholar 

  18. Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., Riedl, J.: An open architecture for collaborative filtering of netnews. In: Proc. of the ACM Conference on Computer Supported Cooperative Work (CSCW 1994), pp. 175–186 (1994)

    Google Scholar 

  19. Adomavicius, G., Kwon, Y.O.: New recommendation techniques for multi-criteria rating systems. IEEE Intelligent Systems 22(3), 48–55 (2007)

    Article  Google Scholar 

  20. Bell, R., Bennett, J., Koren, Y., Volinsky, C.: The million dollar programming prize. IEEE Spectrum 46(5), 28–33 (2009)

    Article  Google Scholar 

  21. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proc. of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2002), pp. 253-260 (2002)

    Google Scholar 

  22. Lops, P., de Gemmis, M., Semeraro, G.: Content based recommender systems: state of the art and trends. In: Recommender Systems Handbook. Springer (2010)

    Google Scholar 

  23. Burke, R.: Interactive critiquing for catalog navigation in e-commerce. Artificial Intelligence Review 18(3-4), 245–267 (2002)

    Article  Google Scholar 

  24. Schclar, A., Tsikinovsky, A., Rokach, L., Meisels, A., Antwarg, L.: Ensemble methods for improving the performance of neighborhood-based collaborative filtering. In: Proc. of the 3th ACM Conference on Recommender Systems, pp. 261–264 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, J., Yuan, Z., Yu, K. (2014). Cross Media Recommendation in Digital Library. In: Tuamsuk, K., Jatowt, A., Rasmussen, E. (eds) The Emergence of Digital Libraries – Research and Practices. ICADL 2014. Lecture Notes in Computer Science, vol 8839. Springer, Cham. https://doi.org/10.1007/978-3-319-12823-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12823-8_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12822-1

  • Online ISBN: 978-3-319-12823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics