Skip to main content

EMG-Based Control of a Lower-Limb Power-Assist Robot

  • Chapter
Intelligent Assistive Robots

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 106))

Abstract

Power-assist robots are expected to work in many fields such as industry, military, medicine, etc. A lower-limb power-assist robot for physically weak persons is supposed to be used for self-rehabilitation or daily motion assist. In order to assist daily motion of the physically weak persons, the robot must estimate the motion intention of the user in real-time. Although there are several kinds of method to estimate the motion intention of the user in real-time, Electromyogram (EMG) signals are often used to estimate that since they reflect the users muscle activities. However, EMG-based real-time motion estimation is not very easy because of several reasons. In this chapter, an EMG-based control method is introduced to control the power-assist lower-limb exoskeleton robot in accordance with users motion intention. A neuro-fuzzy modifier is applied to deal with those problems. The problems of EMG-based motion estimation are cleared by applying the neuro-fuzzy modifier.

Sometimes there is a problem in the users motion even though the users motion is assisted, if the user misunderstands interaction between the users motion and a surrounding environment. In that case, the users motion should be modified to avoid an accident. In this chapter, a method of perception-assist is also introduced to automatically modify the users motion properly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guizzo, E., Goldstein, H.: The Rise of the Body Bots. IEEE Spectrum 42(10), 42–48 (2005)

    Article  Google Scholar 

  2. Dollar, A.M., Herr, H.: Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art. IEEE Trans. on Robotics 24(1), 144–158 (2008)

    Article  Google Scholar 

  3. Yang, C.J., Zhang, J.F., Chen, Y., Dong, Y.M., Zhang, Y.: A Review of Exoskeleton-type Systems and Their Key Technologies. Proc. of IMechE, Journal of Mechanical Engineering Science, Part C 222, 1599–1612 (2008)

    Article  Google Scholar 

  4. Rosen, J., Brand, M., Fuchs, M., Arcan, M.: A Myosignal-Based Powered Exoskeleton System. IEEE Trans. on System Man and Cybernetics, Part A 31(3), 210–222 (2001)

    Article  Google Scholar 

  5. Kiguchi, K., Kariya, S., Watanabe, K., Izumi, K., Fukuda, T.: An Exoskeletal Robot for Human Elbow Motion Support. Sensor Fusion, Adaptation, and Control. IEEE Trans. on Systems, Man, and Cybernetics, Part B 31(3), 353–361 (2001)

    Article  Google Scholar 

  6. Kiguchi, K., Tanaka, T., Fukuda, T.: Neuro-Fuzzy Control of a Robotic Exoskeleton with EMG Signals. IEEE Trans. on Fuzzy Systems 12(4), 481–490 (2004)

    Article  Google Scholar 

  7. Kiguchi, K., Esaki, R., Fukuda, T.: Development of a Wearable Exoskeleton for Daily Forearm Motion Assist. Advanced Robotics 19(7), 751–771 (2005)

    Article  Google Scholar 

  8. Cavallaro, E.E., Rosen, J., Perry, J.C., Burns, S.: Gravity-balancing leg orthosis and its performance evaluation. IEEE Trans. Robotics 22(6), 1228–1239 (2006)

    Article  Google Scholar 

  9. Riener, R., Lünenburger, L., Jezernik, S., Anderschitz, M., Colombo, G., Dietz, V.: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 380–394 (2005)

    Article  Google Scholar 

  10. Hogan, N.: Impedance control: an approach to manipulation, parts I, II, III. J. Dyn. Syst., Meas. Control 107, 1–23 (1985)

    Article  MATH  Google Scholar 

  11. Blaya, J., Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Rehabil. Eng. 12(1), 24–31 (2004)

    Article  Google Scholar 

  12. Bar-Cohen, Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality, Potential and Challenges. SPIE Press (2004)

    Google Scholar 

  13. Noritsugu, T., Tanaka, T.: Application of rubber artificial muscle manipulator as a rehabilitation robot. IEEE/ASME Trans. Mechatronics 2(4), 259–267 (1997)

    Article  Google Scholar 

  14. Buerger, S.P., Hogan, N.: Complementary stability and loop shaping for improved human-robot interaction. IEEE Trans. Robotics 23(2), 232–244 (2007)

    Article  Google Scholar 

  15. Paluska, D., Herr, H.: Series elasticity and actuator power output. In: Proc. IEEE Int. Conf. Robotics Autom.: ICRA 2006, pp. 1830–1833 (2006)

    Google Scholar 

  16. Kong, K., Tomizuka, M.: Flexible joint actuator for patient’s rehabilitation device. In: Proc. IEEE Int. Symp. Robot Human Interactive Commun.: ROMAN 2007, pp. 1179–1184 (2007)

    Google Scholar 

  17. Pratt, J., Krupp, B., Morse, C.: Series elastic actuators for high fidelity force control. Int. J. Ind. Robot 29(3), 234–241 (2002)

    Article  Google Scholar 

  18. Low, K.H.: Initial experiments of a leg mechanism with a flexible geared joint and footpad. Adv. Robotics 19(4), 373–399 (2005)

    Article  Google Scholar 

  19. Pratt, G.A., Williamson, M.W.: Series elastic actuators. In: Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst.: IROS 1995, Pittsburgh, PA, pp. 399–406 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kiguchi, K., Hayashi, Y. (2015). EMG-Based Control of a Lower-Limb Power-Assist Robot. In: Mohammed, S., Moreno, J., Kong, K., Amirat, Y. (eds) Intelligent Assistive Robots. Springer Tracts in Advanced Robotics, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-12922-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12922-8_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12921-1

  • Online ISBN: 978-3-319-12922-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics