Skip to main content

Robust Control of an Actuated Orthosis for Lower Limb Movement Restoration

  • Chapter
Book cover Intelligent Assistive Robots

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 106))

Abstract

The present chapter deals with the development of two rehabilitation approaches of the lower limb by means of the knee joint exoskeleton EICOSI. The model of the exoskeleton is presented as well as a modified Hill-type muscular model of the wearer’s lower limb. The parameters of the shank-foot-exoskeleton and the muscles are identified based on a least square optimization algorithm. Two control techniques are proposed: the first one ensures the passive rehabilitation of the lower limb by means of bounded control laws and the second ensures the assistance-as-need of the wearer based on the human intention estimated by means of EMG electrodes fixed at some particular muscles. Experimental tests are performed on healthy subjects and show the efficiency of the proposed strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hassani, W., Mohammed, S., Amirat, Y.: Real-time emg driven lower limb actuated orthosis for assistance as needed movement strategy. In: The 2013 Robotics: Science and Systems Conference, Berlin, Germany (2013)

    Google Scholar 

  2. Hassani, W., Mohammed, S., Rifai, H., Amirat, Y.: Emg based approach for wearer-centered control of a knee joint actuated orthosis. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 990–995 (2013)

    Google Scholar 

  3. Pons, J.: Rehabilitation exoskeletal robotics. IEEE Engineering in Medicine and Biology Magazine 29(3), 57–63 (2010)

    Article  Google Scholar 

  4. Lalami, M., Rifaï, H., Mohammed, S., Hassani, W., Fried, G., Amirat, Y.: Output feedback control of an actuated lower limb orthosis with bounded input. Industrial Robot: An International Journal 40(6), 541–549 (2013)

    Article  Google Scholar 

  5. Jansen, C., Windau, J., Bonutti, P., Brillhart, M.: Treatment of a knee contracture using a knee orthosis incorporating stress-relaxation techniques. Physical Therapy 76(2), 182–186 (1996)

    Google Scholar 

  6. UHC: Mechanical stretching and continuous passive motion devices. Technical report, United Health Care Services, Inc. (2011)

    Google Scholar 

  7. De Rossi, S., Vitiello, N., Lenzi, T., Ronsse, R., Koopman, B., Persichetti, A., Vecchi, F., Ijspeert, A., Van der Kooij, H., Carrozza, M.: Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface. Sensors 11(1), 207–227 (2010)

    Article  Google Scholar 

  8. Pratt, J., Krupp, B., Morse, C., Collins, S.: The roboknee: an exoskeleton for enhancing strength and endurance during walking. In: 2004 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2430–2435 (2004)

    Google Scholar 

  9. Rosen, J., Brand, M., Fuchs, M., Arcan, M.: A myosignal-based powered exoskeleton system. IEEE Transactions on Systems, Man, and Cybernetics 31(3), 210–222 (2001)

    Article  Google Scholar 

  10. Fleischer, C., Hommel, G.: A human-exeskeleton interface utilizing electromyography. IEEE Transactions on Robotics 24(4), 872–882 (2008)

    Article  Google Scholar 

  11. Sawicki, G., Gordon, K., Ferris, D.: Powered lower limb orthoses: applications in motor adaptation and rehabilitation. In: 9th International Conference on Rehabilitation Robotics (ICORR), pp. 206–211 (2005)

    Google Scholar 

  12. Kiguchi, K., Iwami, K., Yasuda, M., Watanabe, K., Fukuda, T.: An exoskeletal robot for human shoulder joint motion assist. IEEE/ASME Transactions on Mechatronics 8(1), 125–135 (2003)

    Article  Google Scholar 

  13. Rosen, J., Fuchs, M., Arcan, M.: Performances of hill-type and neural network muscle models - toward a myosignal-based exoskeleton. Computers and Biomedical Research 32(5), 415–439 (1999)

    Article  Google Scholar 

  14. Khokhar, Z., Xiao, Z., Menon, C.: Surface emg pattern recognition for real-time control of a wrist exoskeleton. Biomedical Engineering Online 9(1), 41 (2010)

    Article  Google Scholar 

  15. Nikitczuk, J., Weinberg, B., Mavroidis, C.: Control of electro-rheological fluid based resistive torque elements for use in active rehabilitation devices. Smart Materials and Structures 16(2), 418 (2007)

    Article  Google Scholar 

  16. Suzuki, K., Mito, G., Kawamoto, H., Hasegawa, Y., Sankai, Y.: Intention-based walking support for paraplegia patients with robot suit hal. Advanced Robotics 21(12), 1441–1469 (2007)

    Google Scholar 

  17. Mefoued, S., Mohammed, S., Amirat, Y.: Toward movement restoration of knee joint using robust control of powered orthosis. IEEE Transactions on Control Systems Technology 21(6), 2156–2168 (2013)

    Article  Google Scholar 

  18. Kiguchi, K., Tanaka, T., Fukuda, T.: Neuro-fuzzy control of a robotic exoskeleton with emg signals. IEEE Transactions on Fuzzy Systems 12(4), 481–490 (2004)

    Article  Google Scholar 

  19. Zhang, J., Yang, C.J., Chen, Y., Zhang, Y., Dong, Y.: Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton. Mechatronics 18(8), 448–457 (2008)

    Article  Google Scholar 

  20. Rifai, H., Mohammed, S., Daachi, B., Amirat, Y.: Adaptive control of a human-driven knee joint orthosis. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 2486–2491 (2012)

    Google Scholar 

  21. Rifai, H., Mohammed, S., Hassani, W., Amirat, Y.: Nested saturation based control of an actuated knee joint orthosis. Mechatronics 23(8), 1141–1149 (2013)

    Article  Google Scholar 

  22. Winter, D.: Biomechanics and motor control of human movement. John Wiley & Sons (2009)

    Google Scholar 

  23. Damiano, D., Laws, E., Carmines, D., Abel, M.: Relationship of spasticity to knee angular velocity and motion during gait in cerebral palsy. Gait & Posture 23(1), 1–8 (2006)

    Article  Google Scholar 

  24. Swevers, J., Ganseman, C., Tukel, D.B., De Schutter, J., Van Brussel, H.: Optimal robot excitation and identification. IEEE Transactions on Robotics and Automation 13(5), 730–740 (1997)

    Article  Google Scholar 

  25. Sartori, M., Lloyd, D.G., Reggiani, M., Pagello, E.: A stiff tendon neuromusculoskeletal model of the knee. In: 2009 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), pp. 132–138 (2009)

    Google Scholar 

  26. Thelen, D.: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. Journal of Biomechanical Engineering 125(1), 70–77 (2003)

    Article  Google Scholar 

  27. Schutte, L.: Using musculoskeletal models to explore strategies for improving performance in electrical stimulation-induced leg cycle ergometry. PhD thesis, Stanford University (1992)

    Google Scholar 

  28. Yamaguchi, G.: Dynamic modeling of musculoskeletal motion: a vectorized approach for biomechanical analysis in three dimensions. Springer (2005)

    Google Scholar 

  29. Zajac, F.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering 17(4), 359–411 (1988)

    Google Scholar 

  30. Arnold, E., Ward, S., Lieber, R., Delp, S.: A model of the lower limb for analysis of human movement. Annals of Biomedical Engineering 38(2), 269–279 (2010)

    Article  Google Scholar 

  31. Delp, S., Loan, J., Hoy, M., Zajac, F., Topp, E., Rosen, J.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 37(8), 757–767 (1990)

    Article  Google Scholar 

  32. Ortega, R., Loria, A., Nicklasson, P., Sira-Ramirez, H.: Passivity-based con-trol of Euler-Lagrange systems: mechanical, electrical and electromechanical applications. Springer London Ltd. (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samer Mohammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohammed, S., Huo, W., Rifaï, H., Hassani, W., Amirat, Y. (2015). Robust Control of an Actuated Orthosis for Lower Limb Movement Restoration. In: Mohammed, S., Moreno, J., Kong, K., Amirat, Y. (eds) Intelligent Assistive Robots. Springer Tracts in Advanced Robotics, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-12922-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12922-8_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12921-1

  • Online ISBN: 978-3-319-12922-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics