Skip to main content

Recent Development and Trends of Clinical-Based Gait Rehabilitation Robots

  • Chapter
Intelligent Assistive Robots

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 106))

Abstract

Loss of motor and sensory ability is frequently encountered by people with arthritis, stroke, trauma resulting in brain injuries or spinal cord injury (SCI), or other neurological diseases [1]. Walking impairments have an impact on subjects in terms of decreased self-independence and quality of life. Moreover, people with motor disabilities become a great burden on their families and healthcare units [2]. In order to regain normal lower-limb function as much as possible, gait rehabilitation such as locomotion training is commonly employed as therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edgerton, V.R., Tillakaratne, N.J.K., Bigbee, A.J., de Leon, R.D., Roy, R.R.: Plasticity of the spinal neural circuitry after injury. Annual Review of Neuroscience 27, 145–167 (2004)

    Article  Google Scholar 

  2. Wolf, S.L., Butler, A.J., Alberts, J.L., Kim, M.W.: Contemporary linkages between EMG, kinetics and stroke rehabilitation. Journal of Electromyography and Kinesiology 15, 229–239 (2005)

    Article  Google Scholar 

  3. Shadmehr, R., Holcomb, H.H.: Neural Correlates of Motor Memory Consolidation. Science 277, 821–825 (1997)

    Article  Google Scholar 

  4. Barnes, M.P., Dobkin, B.H., Bogousslavsky, J.: Recovery after stroke: Cambridge Univ. Pr. (2005)

    Google Scholar 

  5. A.R.: M ller, Neural plasticity and disorders of the nervous system: Cambridge Univ. Pr. (2006)

    Google Scholar 

  6. Anderson, K.D.: Targeting recovery: Priorities of the spinal cord-injured population. Journal of Neurotrauma 21, 1371–1383 (2004)

    Article  Google Scholar 

  7. Dietz, V., Harkema, S.J.: Locomotor activity in spinal cord-injured persons. Journal of Applied Physiology 96, 1954–1960 (2004)

    Article  Google Scholar 

  8. Yen, S.C., Schmit, B.D., Landry, J.M., Roth, H., Wu, M.: Locomotor adaptation to resistance during treadmill training transfers to overground walking in human SCI. Experimental Brain Research 216, 473–482 (2012)

    Article  Google Scholar 

  9. Harkema, S.J.: Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. The Neuroscientist 7, 455–468 (2001)

    Article  Google Scholar 

  10. Dobkin, B., Apple, D., Barbeau, H., Basso, M., Behrman, A., Deforge, D., Ditunno, J., Dudley, G., Elashoff, R., Fugate, L., Harkema, S., Saulino, M., Scott, M., Grp, S.: Weight-supported treadmill vs overground training for walking after acute incomplete SCI. Neurology 66, 484–492 (2006)

    Article  Google Scholar 

  11. Barbeau, H., Ladouceur, M., Norman, K.E., Pepin, A., Leroux, A.: Walking after spinal cord injury: Evaluation, treatment, and functional recovery. Archives of Physical Medicine and Rehabilitation 80, 225–235 (1999)

    Article  Google Scholar 

  12. Wirz, M., Zemon, D.H., Rupp, R., Scheel, A., Colombo, G., Dietz, V., Hornby, T.G.: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial. Archives of Physical Medicine and Rehabilitation 86, 672–680 (2005)

    Article  Google Scholar 

  13. Nooijen, C.F.J., ter Hoeve, N., Field-Fote, E.C.: Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. Journal of Neuroengineering and Rehabilitation 6 (October 2009)

    Google Scholar 

  14. Wang, P.: Gait Locomotion Generation and Leg Muscle Evaluation for Overground Walking Rehabilitation Robots, PhD Thesis, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore (2012)

    Google Scholar 

  15. Ottenbacher, K.J.: Evaluating clinical change: Strategies for occupational and physical therapists. Lippincott Williams and Wilkins (1986)

    Google Scholar 

  16. Gordon, K., Ferris, D., Roberton, M., Beres, J., Harkema, S.: The importance of using an appropriate body weight support system in locomotor training. Soc. Neurosci., 160 (2000)

    Google Scholar 

  17. Behrman, A.L., Harkema, S.J.: Locomotor training after human spinal cord injury: A series of case studies. Physical Therapy 80, 688–700 (2000)

    Google Scholar 

  18. Wang, P., Low, K.H., Tow, A., Lim, P.H.: Initial System Evaluation of an Overground Rehabilitation Gait Training Robot (NaTUre-gaits). Advanced Robotics 25, 1927–1948 (2011)

    Article  Google Scholar 

  19. Hayashi, T., Kawamoto, H., Sankai, Y.: Control method of robot suit HAL working as operator’s muscle using biological and dynamical information. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, Alberta, Canada, pp. 3455–3460 (2005)

    Google Scholar 

  20. Bouri, M., Stauffer, Y., Schmitt, C., Allemand, Y., Gnemmi, S., Clavel, R., Metrailler, P., Brodard, R.: The WalkTrainer (TM): a robotic system for walking rehabilitation. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), Kunming, China, pp. 1616–1621 (2006)

    Google Scholar 

  21. Veneman, J.F., Kruidhof, R., Hekman, E.E.G., Ekkelenkamp, R., Van Asseldonk, E.H.F., Van der Kooij, H.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15, 379–386 (2007)

    Article  Google Scholar 

  22. Peshkin, M., Brown, D.A., Santos-Munne, J.J., Makhlin, A., Lewis, E., Colgate, J.E., Patton, J., Schwandt, D.: KineAssist: a robotic overground gait and balance training device. In: IEEE 9th International Conference on Rehabilitation Robotics (ICORR), Chicago, IL, USA, pp. 241–246 (2005)

    Google Scholar 

  23. Mokhtarian, A., Fattah, A., Agrawal, S.K.: A novel passive pelvic device for assistance during locomotion. In: IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA, pp. 2241–2246 (2010)

    Google Scholar 

  24. Frey, M., Colombo, G., Vaglio, M., Bucher, R., Jorg, M., Riener, R.: A novel mechatronic body weight support system. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14, 311–321 (2006)

    Article  Google Scholar 

  25. Norman, K.E., Pepin, A., Ladouceur, M., Barbeau, H.: A treadmill apparatus and harness support for evaluation and rehabilitation of gait. Archives of Physical Medicine and Rehabilitation 76, 772–778 (1995)

    Article  Google Scholar 

  26. Morris, D.M., Taub, E.: Constraint-induced therapy approach to restoring function after neurological injury. Topics in Stroke Rehabilitation 8, 16–30 (2001)

    Article  Google Scholar 

  27. Lim, H.B.: Study and Implementation of a Gait Rehabilitation System with Capability for Mobility and Gait Pattern Generation. PhD Thesis, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore (2012)

    Google Scholar 

  28. Nymark, J.R., Balmer, S.J., Melis, E.H., Lemaire, E.D., Millar, S.: Electromyographic and kinematic nondisabled gait differences at extremely slow overground and treadmill walking speeds. Journal of Rehabilitation Research and Development 42, 523–534 (2005)

    Article  Google Scholar 

  29. Whittle, M.: Gait analysis: an introduction. Butterworth-Heinemann Medical (2002)

    Google Scholar 

  30. Low, K.H.: Robot-assisted gait rehabilitation: From exoskeletons to gait systems. In: Proceedings of the 2011 Defense Science Research Conference and Expo (DSR 2011), Singapore, 10 pages (August 2011), doi:10.1109/DSR.2011.6026886).

    Google Scholar 

  31. Warabi, T., Kato, M., Kiriyama, K., Yoshida, T., Kobayashi, N.: Treadmill walking and overground walking of human subjects compared by recording sole-floor reaction force. Neuroscience Research 53, 343–348 (2005)

    Article  Google Scholar 

  32. Stolze, H., Kuhtz-Buschbeck, J.P., Mondwurf, C., Boczek-Funcke, A., Johnk, K., Deuschl, G., Illert, M.: Gait analysis during treadmill and overground locomotion in children and adults. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control 105, 490–497 (1997)

    Article  Google Scholar 

  33. Vogt, L., Pfeifer, K., Banzer, W.: Comparison of angular lumbar spine and pelvis kinematics during treadmill and overground locomotion. Clinical Biomechanics 17, 162–165 (2002)

    Article  Google Scholar 

  34. Hesse, S., Konrad, M., Uhlenbrock, D.: Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects. Archives of Physical Medicine and Rehabilitation 80, 421–427 (1999)

    Article  Google Scholar 

  35. Song, J.L., Hidler, J.: Biomechanics of overground vs. treadmill walking in healthy individuals. Journal of Applied Physiology 104, 747–755 (2008)

    Article  Google Scholar 

  36. Riley, P.O., Paolini, G., Della Croce, U., Paylo, K.W., Kerrigan, D.C.: A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait and Posture 26, 17–24 (2007)

    Article  Google Scholar 

  37. Brouwer, B., Parvataneni, K., Olney, S.J.: A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke. Clinical Biomechanics 24, 729–734 (2009)

    Article  Google Scholar 

  38. Alton, F., Baldey, L., Caplan, S., Morrissey, M.C.: A kinematic comparison of overground and treadmill walking. Clinical Biomechanics 13, 434–440 (1998)

    Article  Google Scholar 

  39. Seo, K.H., Lee, J.J.: The development of two mobile gait rehabilitation systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering 17, 156–166 (2009)

    Article  Google Scholar 

  40. Patton, J., Brown, D.A., Peshkin, M., Santos-Munn, J.J., Makhlin, A., Lewis, E., Colgate, J.E., Schwandt, D.: KineAssist: Design and development of a robotic overground gait and balance therapy device. Topics in Stroke Rehabilitation 15, 131–139 (2008)

    Article  Google Scholar 

  41. Ferris, D.P., Sawicki, G.S., Domingo, A.R.: Powered lower limb orthoses for gait rehabilitation. Topics in Spinal Cord Injury Rehabilitation 11, 34–49 (2005)

    Article  Google Scholar 

  42. Banala, S.K., Kim, S.H., Agrawal, S.K., Scholz, J.P.: Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Transactions on Neural Systems and Rehabilitation Engineering 17, 2–8 (2009)

    Article  Google Scholar 

  43. Zoss, A.B., Kazerooni, H., Chu, A.: Biomechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics 11, 128–138 (2006)

    Article  Google Scholar 

  44. Liu, X.P., Low, K.H.: Development and preliminary study of the NTU lower extremity exoskeleton. In: IEEE Conference on Cybernetics and Intelligent Systems, Singapore, pp. 1243–1247 (2004)

    Google Scholar 

  45. Kawamoto, H., Sankai, Y.: Comfortable power assist control method for walking aid by HAL-3. In: IEEE International Conference on Systems, Man and Cybernetics, Hammamet, Tunisia, vol. 4, p. 6 (2002)

    Google Scholar 

  46. Bionics, B. (June 2012), http://berkeleybionics.com/exoskeletons-rehab-mobility/

  47. AGRO (June), http://www.argomedtec.com/

  48. Bionics, R.: (June)

    Google Scholar 

  49. Ikeuchi, Y., Ashihara, J., Hiki, Y., Kudoh, H., Noda, T.: Walking assist device with bodyweight support system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, USA, pp. 4073–4079 (2009)

    Google Scholar 

  50. Werner, C., Von Frankenberg, S., Treig, T., Konrad, M., Hesse, S.: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: A randomized crossover study. Stroke 33, 2895–2901 (2002)

    Article  Google Scholar 

  51. Barbeau, H., Wainberg, M., Finch, L.: Description and application of a system for locomotor rehabilitation. Medical and Biological Engineering and Computing 25, 341–344 (1987)

    Article  Google Scholar 

  52. Behrman, A.L., Lawless-Dixon, A.R., Davis, S.B., Bowden, M.G., Nair, P., Phadke, C., Hannold, E.M., Plummer, P., Harkema, S.J.: Locomotor training progression and outcomes after incomplete spinal cord injury. Physical Therapy 85, 1356–1371 (2005)

    Google Scholar 

  53. Lim, H.B., Luu, T.P., Hoon, K.H., Qu, X., Tow, A., Low, K.H.: Study of body weight shifting on robotic assisted gait rehabilitation with NaTUre-gaits. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2011), San Francisco, pp. 4923–4928 (September 2011)

    Google Scholar 

  54. Galvez, J.A., Kerdanyan, G., Maneekobkunwong, S., Weber, R., Scott, M., Harkema, S.J., Reinkensmeyer, D.J.: Measuring human trainers’ skill for the design of better robot control algorithms for gait training after spinal cord injury. In: Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, vol. 2005, pp. 231–234 (2005)

    Google Scholar 

  55. Luu, T.P.: Individual-Specific Gait Pattern Planning and Locomotion Control Strategy for Robotic Gait Rehabilitation. PhD Thesis, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore (2014)

    Google Scholar 

  56. Hesse, S., Mehrholz, J., Werner, C.: Robot-assisted upper and lower limb rehabilitation after stroke. Roboter- und Gerätegestützte Rehabilitation Nach Schlaganfall: Gehen und Arm-/handfunktion 105, 330–336 (2008)

    Google Scholar 

  57. Hesse, S., Werner, C.: Connecting research to the needs of patients and clinicians. Brain Research Bulletin 78, 26–34 (2009)

    Article  Google Scholar 

  58. Banala, S.K., Kulpe, A., Agrawal, S.K.: A powered leg orthosis for gait rehabilitation of motor-impaired patients. In: Proceedings of the IEEE International Conference on Robotics and Automation, Rome, pp. 4140–4145 (2007)

    Google Scholar 

  59. Our Technology, http://www.warecentre.com/_images/_tech/lokomat.jpg (accessed on July 2010)

  60. Van Asseldonk, E.H.F., Veneman, J.F., Ekkelenkamp, R., Buurke, J.H., Van Der Helm, F.C.T., Van Der Kooij, H.: The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Transactions on Neural Systems and Rehabilitation Engineering 16, 360–370 (2008)

    Article  Google Scholar 

  61. Aoyagi, D., Ichinose, W.E., Harkema, S.J., Reinkensmeyer, D.J., Bobrow, J.E.: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15, 387–400 (2007)

    Article  Google Scholar 

  62. Allemand, Y., Stauffer, Y., Clavel, R., Brodard, R.: Design of a new lower extremity orthosis for overground gait training with the WalkTrainer. In: Proceedings of the IEEE 11th International Conference on Rehabilitation Robotics, Kyoto, Japan, pp. 550–555 (2009)

    Google Scholar 

  63. Hussein, S., Schmidt, H., Hesse, S., Kruger, J.: Effect of different training modes on ground reaction forces during robot assisted floor walking and stair climbing. In: Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009, Kyoto, Japan, pp. 845–850 (2009)

    Google Scholar 

  64. Banala, S.K., Kim, S.H., Agrawal, S.K., Scholz, J.P.: Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Transactions on Neural Systems and Rehabilitation Engineering 17, 2–8 (2009)

    Article  Google Scholar 

  65. Vallery, H., Veneman, J., van Asseldonk, E., Ekkelenkamp, R., Buss, M., van Der Kooij, H.: Compliant actuation of rehabilitation robots. IEEE Robotics and Automation Magazine 15, 60–69 (2008)

    Article  Google Scholar 

  66. Reinkensmeyer, D.J., Aoyagi, D., Emken, J.L., Galvez, J.A., Ichinose, W., Kerdanyan, G., Maneekobkunwong, S., Minakata, K., Nessler, J.A., Weber, R., Roy, R.R., De Leon, R., Bobrow, J.E., Harkema, S.J., Reggie Edgerton, V.: Tools for understanding and optimizing robotic gait training. Journal of Rehabilitation Research and Development 43, 657–670 (2006)

    Article  Google Scholar 

  67. The Driven Gait Orthosis Lokomat, http://www.jneuroengrehab.com/content/4/1/1/figure/F1?highres=y (accessed on September 2010)

  68. Robomedica, Inc., http://www.robomedica.com/ (accessed on July 2010)

  69. KineAssist, http://www.kineadesign.com/ (accessed on July 2010)

  70. Perry, J.: Gait Analysis - Normal and Pathological Function. SLACK Incorporated (1992)

    Google Scholar 

  71. Inman, V.T., Ralston, H., Todd, F.: Human Walking, 1st edn. Williams and Wilkins, Baltimore/London (1981)

    Google Scholar 

  72. Neptune, R.R., Kautz, S.A., Zajac, F.E.: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. Journal of Biomechanics 34, 1387–1398 (2001)

    Article  Google Scholar 

  73. Veneman, J.F., Menger, J., van Asseldonk, E.H.F., van der Helm, F.C.T., van der Kooij, H.: Fixating the pelvis in the horizontal plane affects gait characteristics. Gait and Posture 28, 157–163 (2008)

    Article  Google Scholar 

  74. Kaelin-Lane, A., Sawaki, L., Cohen, L.G.: Role of voluntary drive in encoding an elementary motor memory. Journal of Neurophysiology 93, 1099–1103 (2005)

    Article  Google Scholar 

  75. Lotze, M., Braun, C., Birbaumer, N., Anders, S., Cohen, L.G.: Motor learning elicited by voluntary drive. Brain 126, 866–872 (2003)

    Article  Google Scholar 

  76. Lippman, L.G., Rees, R.: Consequences of Error Production in a Perceptual-Motor Task. Journal of General Psychology 124, 133–142 (1997)

    Article  Google Scholar 

  77. Weiller, C., Juptner, M., Fellows, S., Rijntjes, M., Leonhardt, G., Kiebel, S., Muller, S., Diener, H.C., Thilmann, A.F.: Brain representation of active and passive movements. NeuroImage 4, 105–110 (1996)

    Article  Google Scholar 

  78. Carel, C., Loubinoux, I., Boulanouar, K., Manelfe, C., Rascol, O., Celsis, P., Chollet, F.: Neural substrate for the effects of passive training on sensorimotor cortical representation: A study with functional magnetic resonance imaging in healthy subjects. Journal of Cerebral Blood Flow and Metabolism 20, 478–484 (2000)

    Article  Google Scholar 

  79. Mima, T., Sadato, N., Yazawa, S., Hanakawa, T., Fukuyama, H., Yonekura, Y., Shibasaki, H.: Brain structures related to active and passive finger movements in man. Brain 122, 1989–1997 (1999)

    Article  Google Scholar 

  80. Hornby, T.G., Zemon, D.H., Campbell, D.: Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Physical Therapy 85, 52–66 (2005)

    Google Scholar 

  81. Israel, J.F., Campbell, D.D., Kahn, J.H., Hornby, T.G.: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Physical Therapy 86, 1466–1478 (2006)

    Article  Google Scholar 

  82. Hidler, J.M., Wall, A.E.: Alterations in muscle activation patterns during robotic-assisted walking. Clinical Biomechanics 20, 184–193 (2005)

    Article  Google Scholar 

  83. Riener, R., Lunenburger, L., Jezernik, S., Anderschitz, M., Colombo, G., Dietz, V.: Patient-cooperative strategies for robot-aided treadmill training: First experimental results. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13, 380–394 (2005)

    Article  Google Scholar 

  84. Bernhardt, M., Frey, M., Colombo, G., Riener, R.: Hybrid force-position control yields cooperative behaviour of the rehabilitation robot LOKOMAT. In: Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, pp. 536–539 (2005)

    Google Scholar 

  85. Banala, S.K., Agrawal, S.K., Kim, S.H., Scholz, J.P.: Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Transactions on Mechatronics 15, 216–225 (2010)

    Article  Google Scholar 

  86. Dollar, A.M., Herr, H.: Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Transactions on Robotics 24, 144–158 (2008)

    Article  Google Scholar 

  87. Vallery, H., Van Asseldonk, E.H.F., Buss, M., Van Der Kooij, H.: Reference trajectory generation for rehabilitation robots: Complementary limb motion estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 17, 23–30 (2009)

    Article  Google Scholar 

  88. Riener, R., Lunenburger, L., Colombo, G.: Cooperative strategies for robot-aided gait neuro-rehabilitation. In: Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, San Francisco, CA, vol. 26 VII, pp. 4822–4825 (2004)

    Google Scholar 

  89. Rose, J., Gamble, J.G.: Human Walking, 3rd edn. Lippincott Williams & Wilkins, Philadelphia (2006)

    Google Scholar 

  90. Boone, D.C., Azen, S.P.: Normal range of motion of joints in male subjects. Journal of Bone and Joint Surgery - Series A 61, 756–759 (1979)

    Google Scholar 

  91. Levangie, P.K., Norkin, C.C.: Joint Structure and Function: A Comprehensive Analysis, 4th edn. F A Davis Company (2005)

    Google Scholar 

  92. Winter, D.A.: The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd edn. Waterloo Biomechanics, Ontario (1991)

    Google Scholar 

  93. Wang, P., Low, K.H., McGregor, A.H., Tow, A.: Detection of abnormal muscle activations during walking following spinal cord injury (SCI). Research in Developmental Disabilities 34, 1226–1235 (2013)

    Article  Google Scholar 

  94. Luu, T.P., Low, K.H., Qu, X., Lim, H.B., Hoon, K.H.: An individual-specific gait pattern prediction model based on generalized regression neural networks. Gait and Posture 39, 443–448 (2014)

    Article  Google Scholar 

  95. Luu, T.P., Low, K.H., Qu, X., Lim, H.B., Hoon, K.H.: Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits. IEEE Journal of Translational Engineering in Health and Medicine 2014, 9 pages, doi:10.1109/JTEHM.2014.2303807

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin Huat Low .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Low, K.H. (2015). Recent Development and Trends of Clinical-Based Gait Rehabilitation Robots. In: Mohammed, S., Moreno, J., Kong, K., Amirat, Y. (eds) Intelligent Assistive Robots. Springer Tracts in Advanced Robotics, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-12922-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12922-8_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12921-1

  • Online ISBN: 978-3-319-12922-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics