Abstract
The Internet of Things will include many resource-constrained wireless sensing devices, hungry for energy, bandwidth and compute cycles. The sheer amount of devices involved will require new solutions to handle issues such as identification and power provisioning. In this contribution, we analyze the energy needs of several public-key based authentication protocols, taking into account the energy cost of communication as well as of computation. We have built an autonomous, energy-harvesting sensor node which includes a micro-controller, RF-unit, and energy harvester. We investigate the Elliptic Curve Digital Signature Algorithm (ECDSA), the Lamport-Diffie one-time hash-based signature scheme (LD-OTS) and the Winternitz one-time hash-based signature scheme (W-OTS). We demonstrate that there’s a trade-off between energy used for communication, energy used for computation, and security level. However, when we consider the energy needs for the overall system, we show that all schemes are within one order of magnitude from each another.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anagear Power Management. http://www.anagear.com/content/ANG1010
Texas Instruments Low Power 2.4 GHz RF Transceiver. http://www.ti.com/lit/ds/swrs040c/swrs040c.pdf
Texas Instruments MSP430F5438A Mixed Signal Microcontroller. http://www.ti.com/lit/ds/symlink/msp430f5438a.pdf
Texas Instruments MSP430x5xx and MSP430x6xx Family User’s Guide 2013. http://www.ti.com/lit/ug/slau208m/slau208m.pdf
Xilinx Spartan-6 FPGA LX9 MicroBoard. http://www.em.avnet.com/en-us/design/drc/Pages/Xilinx-Spartan-6-FPGA-LX9-MicroBoard.aspx
Ateniese, G., Bianchi, G., Capossele, A., Petrioli, C.: Low-cost standard signatures in wireless sensor networks: a case for reviving pre-computation techniques? In: NDSS (2013)
Batina, L., Das, A., Ege, B., Kavun, E.B., Mentens, N., Paar, C., Verbauwhede, I., Yalçin, T.: Dietary recommendations for lightweight block ciphers: power, energy and area analysis of recently developed architectures. In: Hutter, M., Schmidt, J.-M. (eds.) RFIDsec 2013. LNCS, vol. 8262, pp. 101–110. Springer, Heidelberg (2013)
Buchmann, J., Dahmen, E., Szydlo, M.: Hash-based digital signature schemes. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 35–93. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-540-88702-7_3
Buettner, M., Greenstein, B., Wetherall, D.: Dewdrop: An energy-aware runtime for computational RFID. In: NSDI (2011)
Cervenka, V., Komosny, D., Malina, L., Mraz, L.: Energy efficient public key cryptography in wireless sensor networks. In: Elleithy, K., Sobh, T. (eds.) Innovations and Advances in Computer, Information, Systems Sciences, and Engineering. Lecture Notes in Electrical Engineering, vol. 152, pp. 497–509. Springer, New York (2013). http://dx.doi.org/10.1007/978-1-4614-3535-8_42
Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11586821_8
Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2003)
Lai, E., Redfern, A., Wright, P.: Vibration powered battery-assisted passive RFID tag. In: Enokido, T., Yan, L., Xiao, B., Kim, D.Y., Dai, Y.-S., Yang, L.T. (eds.) EUC-WS 2005. LNCS, vol. 3823, pp. 1058–1068. Springer, Heidelberg (2005)
Liu, A., Ning, P.: TinyECC: a configurable library for elliptic curve cryptography in wireless sensor networks. In: Proceedings of the 7th International Conference on Information Processing in Sensor Networks, IPSN ’08, pp. 245–256. IEEE Computer Society, Washington, DC (2008). http://dx.doi.org/10.1109/IPSN.2008.47
Mane, D., Schaumont, P.: Energy-architecture tuning for ECC-based RFID tags. In: Hutter, M., Schmidt, J.-M. (eds.) RFIDsec 2013. LNCS, vol. 8262, pp. 145–158. Springer, Heidelberg (2013)
de Meulenaer, G., Gosset, F., Standaert, O.X., Pereira, O.: On the energy cost of communication and cryptography in wireless sensor networks. In: 2008 IEEE International Conference on Wireless and Mobile Computing Networking and Communications, WIMOB ’08, pp. 580–585, October 2008
Mitcheson, P., Yeatman, E., Rao, G., Holmes, A., Green, T.: Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96(9), 1457–1486 (2008)
Kong, N., Cochran, T., Ha, D., Lin, H., Inman, D.: A self-powered power management circuit for energy harvested by a piezoelectric cantilever. In: Applied Power Electronics Conference and Exposition (APEC), 2010 Twenty-Fifth Annual IEEE, APEC2010 (2010). http://www.mics.ece.vt.edu/Research/Publications/ByFaculty/Papers/Ha/10APEC2010_Published.pdf
O’Flynn, C.: OPENADC (2012). http://newae.com/tiki-index.php?page=OpenADC
O’Flynn, C.: Power analysis for cheapskates (2012). https://media.blackhat.com/ad-12/O%27Flynn/bh-ad-12-for-cheapskates-o%27flynn-WP.pdf
Oliveira, L.B., Aranha, D.F., Gouvêa, C.P.L., Scott, M., Câmara, D.F., López, J., Dahab, R.: TinyPBC: pairings for authenticated identity-based non-interactive key distribution in sensor networks. Comput. Commun. 34(3), 485–493 (2011)
Pendl, C., Pelnar, M., Hutter, M.: Elliptic curve cryptography on the WISP UHF RFID tag. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 32–47. Springer, Heidelberg (2012)
Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., Srivastava, M.: Design considerations for solar energy harvesting wireless embedded systems. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, IPSN ’05, IEEE Press, Piscataway, NJ, USA (2005). http://dl.acm.org/citation.cfm?id=1147685.1147764
Ransford, B., Sorber, J., Fu, K.: Mementos: system support for long-running computation on RFID-scale devices. In: ASPLOS, pp. 159–170 (2011)
Rohde, S., Eisenbarth, T., Dahmen, E., Buchmann, J., Paar, C.: Fast hash-based signatures on constrained devices. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 104–117. Springer, Heidelberg (2008)
Struik, R.: AEAD ciphers for highly constrained networks. In: DIAC (2013). http://2013.diac.cr.yp.to/slides/struik.pdf
Vullers, R., Schaijk, R., Visser, H., Penders, J., Hoof, C.: Energy harvesting for autonomous wireless sensor networks. IEEE Solid State Circ. Mag. 2(2), 29–38 (2010)
Wander, A., Gura, N., Eberle, H., Gupta, V., Shantz, S.: Energy analysis of public-key cryptography for wireless sensor networks. In: 2005 Third IEEE International Conference on Pervasive Computing and Communications, PerCom 2005, pp. 324–328, March 2005
Wenger, E., Feldhofer, M., Felber, N.: Low-resource hardware design of an elliptic curve processor for contactless devices. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 92–106. Springer, Heidelberg (2011)
Wenger, E., Werner, M.: Evaluating 16-bit processors for elliptic curve cryptography. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 166–181. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Pabbuleti, K., Mane, D., Schaumont, P. (2014). Energy Budget Analysis for Signature Protocols on a Self-powered Wireless Sensor Node. In: Saxena, N., Sadeghi, AR. (eds) Radio Frequency Identification: Security and Privacy Issues. RFIDSec 2015. Lecture Notes in Computer Science(), vol 8651. Springer, Cham. https://doi.org/10.1007/978-3-319-13066-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-13066-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13065-1
Online ISBN: 978-3-319-13066-8
eBook Packages: Computer ScienceComputer Science (R0)