Skip to main content

Dynamic Interval Scheduling for Multiple Machines

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8889))

Included in the following conference series:

  • 1515 Accesses

Abstract

We study the dynamic scheduling problem for jobs with fixed start and end times on multiple machines. The problem is to maintain an optimal schedule under the update operations: insertions and deletions of jobs. Call the period of time in a schedule between two consecutive jobs in a given machine an idle interval. We show that for any set of jobs there exists a schedule such that the corresponding set of idle intervals forms a tree under the set-theoretic inclusion. Based on this result, we provide a data structure that updates the optimal schedule in \(O(d+\log n)\) worst-case time, where \(d\) is the depth of the set idle intervals and \(n\) is the number of jobs. Furthermore, we show this bound to be tight for any data structure that maintains a nested schedule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, E.M., Silverberg, E.B.: Scheduling jobs with fixed start and end times. Discrete Applied Mathematics 18(1), 1–8 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Diedrich, F., Jansen, K., Pradel, L., Schwarz, U.M., Svensson, O.: Tight approximation algorithms for scheduling with fixed jobs and nonavailability. ACM Transactions on Algorithms (TALG) 8(3), 27 (2012)

    MathSciNet  Google Scholar 

  3. Gavruskin, A., Khoussainov, B., Kokho, M., Liu, J.: Dynamising Interval Scheduling: The Monotonic Case. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 178–191. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Gertsbakh, I., Stern, H.I.: Minimal resources for fixed and variable job schedules. Operations Research 26(1), 68–85 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gupta, U.I., Lee, D.T., Leung, J.T.: An optimal solution for the channel-assignment problem. IEEE Transactions on Computers 100(11), 807–810 (1979)

    Article  Google Scholar 

  6. Kaplan, H., Molad, E., Tarjan, R.E.: Dynamic rectangular intersection with priorities. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 639–648. ACM (2003)

    Google Scholar 

  7. Kleinberg, J., Tardos, E.: Algorithm design. Pearson Education India (2006)

    Google Scholar 

  8. Kolen, A.W., Kroon, L.G.: On the computational complexity of (maximum) class scheduling. European Journal of Operational Research 54(1), 23–38 (1991)

    Article  MATH  Google Scholar 

  9. Kolen, A.W., Kroon, L.G.: An analysis of shift class design problems. European Journal of Operational Research 79(3), 417–430 (1994)

    Article  MATH  Google Scholar 

  10. Kolen, A.W., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.: Interval scheduling: A survey. Naval Research Logistics (NRL) 54(5), 530–543 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kovalyov, M.Y., Ng, C.T., Cheng, T.C.: Fixed interval scheduling: Models, applications, computational complexity and algorithms. European Journal of Operational Research 178(2), 331–342 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kroon, L.G., Salomon, M., Van Wassenhove, L.N.: Exact and approximation algorithms for the operational fixed interval scheduling problem. European Journal of Operational Research 82(1), 190–205 (1995)

    Article  MATH  Google Scholar 

  13. Kroon, L.G., Salomon, M., Van Wassenhove, L.N.: Exact and approximation algorithms for the tactical fixed interval scheduling problem. Operations Research 45(4), 624–638 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mehlhorn, K.: Data structures and algorithms. Multi-dimensional Searching and Computational Geometry, vol. 3. Springer, Berlin (1984)

    Google Scholar 

  15. Shamos, M.I., Hoey, D.: Geometric intersection problems. In: 17th Annual Symposium on Foundations of Computer Science, pp. 208–215. IEEE (1976)

    Google Scholar 

  16. Sleator, D., Tarjan, R.: A Data Structure for Dynamic Trees. Journal of Computer and System Sciences 26(3), 362–391 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Spieksma, F.C.: On the approximability of an interval scheduling problem. Journal of Scheduling 2(5), 215–227 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Kokho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gavruskin, A., Khoussainov, B., Kokho, M., Liu, J. (2014). Dynamic Interval Scheduling for Multiple Machines. In: Ahn, HK., Shin, CS. (eds) Algorithms and Computation. ISAAC 2014. Lecture Notes in Computer Science(), vol 8889. Springer, Cham. https://doi.org/10.1007/978-3-319-13075-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13075-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13074-3

  • Online ISBN: 978-3-319-13075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics