Skip to main content

Scheduling Unit Jobs with a Common Deadline to Minimize the Sum of Weighted Completion Times and Rejection Penalties

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8889))

Included in the following conference series:

  • 1531 Accesses

Abstract

We study the problem of scheduling unit jobs on a singlemachine with a common deadline where some jobs may be rejected. Each job has a weight and a profit and the objective is to minimize the sum of the weighted completion times of the scheduled jobs plus the sum of the profits of the rejected jobs. Our main result is an \({O}({n \log n})\)-time algorithm for this problem. In addition, we show how to incorporate weighted tardiness penalties with respect to a common due date into the objective while preserving the \({O}({n \log n})\) time bound. We also discuss connections to a special class of unit-demand auctions. Finally, we establish that certain natural variations of the scheduling problems that we study are NP-hard.

This research was supported by NSF Grant CCFā€“1217980.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, A., Barnoy, A., Khuller, S., Kravets, D., Schieber, B.: Efficient minimum cost matching and transportation using the quadrangle inequality. Journal of Algorithms 19(1), 116ā€“143 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burkard, R.E.: Monge properties, discrete convexity and applications. European Journal of Operational Research 176(1), 1ā€“14 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)

    Google Scholar 

  4. Demange, G., Gale, D., Sotomayor, M.A.O.: Multi-item auctions. The Journal of Political Economy, 863ā€“872 (1986)

    Google Scholar 

  5. DomaniƧ, N.O., Plaxton, C.G.: Scheduling unit jobs with a common deadline to minimize the sum of weighted completion times and rejection penalties. Tech. Rep. TR-14-11, Department of Computer Science, University of Texas at Austin (September 2014)

    Google Scholar 

  6. Engels, D.W., Karger, D.R., Kolliopoulos, S.G., Sengupta, S., Uma, R.N., Wein, J.: Techniques for scheduling with rejection. Journal of Algorithms 49(1), 175ā€“191 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Epstein, L., Noga, J., Woeginger, G.J.: On-line scheduling of unit time jobs with rejection: minimizing the total completion time. Operations Research Letters 30(6), 415ā€“420 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences 30(2), 209ā€“221 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Glover, F.: Maximum matching in a convex bipartite graph. Naval Research Logistics Quarterly 14(3), 313ā€“316 (1967)

    Article  MATH  Google Scholar 

  10. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics 5, 287ā€“326 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hardy, G.H., Littlewood, J.E., PĆ³lya, G.: Inequalities, 2nd edn. Cambridge University Press (1952)

    Google Scholar 

  12. Katriel, I.: Matchings in node-weighted convex bipartite graphs. INFORMS Journal on Computing 20, 205ā€“211 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Leonard, H.B.: Elicitation of honest preferences for the assignment of individuals to positions. The Journal of Political Economy, 461ā€“479 (1983)

    Google Scholar 

  14. Lipski Jr, W., Preparata, F.P.: Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems. Acta Informatica 15, 329ā€“346 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Plaxton, C.G.: Vertex-weighted matching in two-directional orthogonal ray graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 524ā€“534. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Shabtay, D., Gaspar, N., Kaspi, M.: A survey on offline scheduling with rejection. Journal of Scheduling 16(1), 3ā€“28 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shabtay, D., Gaspar, N., Yedidsion, L.: A bicriteria approach to scheduling a single machine with job rejection and positional penalties. Journal of Combinatorial Optimization 23(4), 395ā€“424 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shapley, L.S., Shubik, M.: The assignment game I: The core. International Journal of Game Theory 1(1), 111ā€“130 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  19. Slotnick, S.A.: Order acceptance and scheduling: A taxonomy and review. European Journal of Operational Research 212(1), 1ā€“11 (2011)

    Article  MathSciNet  Google Scholar 

  20. Slotnick, S.A., Morton, T.E.: Selecting jobs for a heavily loaded shop with lateness penalties. Computers and Operations Research 23(2), 131ā€“140 (1996)

    Article  MATH  Google Scholar 

  21. Steiner, G., Yeomans, J.S.: A linear time algorithm for determining maximum matchings in convex, bipartite graphs. Computers and Mathematics with Applications 31, 91ā€“96 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevzat Onur DomaniƧ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

DomaniƧ, N.O., Plaxton, C.G. (2014). Scheduling Unit Jobs with a Common Deadline to Minimize the Sum of Weighted Completion Times and Rejection Penalties. In: Ahn, HK., Shin, CS. (eds) Algorithms and Computation. ISAAC 2014. Lecture Notes in Computer Science(), vol 8889. Springer, Cham. https://doi.org/10.1007/978-3-319-13075-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13075-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13074-3

  • Online ISBN: 978-3-319-13075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics