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Abstract. In this paper, we address the problem of enumerating all in-
duced subtrees in an input k-degenerate graph, where an induced subtree
is an acyclic and connected induced subgraph. A graph G = (V, E) is a
k-degenerate graph if for any its induced subgraph has a vertex whose
degree is less than or equal to k, and many real-world graphs have small
degeneracies, or very close to small degeneracies. Although, the studies
are on subgraphs enumeration, such as trees, paths, and matchings, but
the problem addresses the subgraph enumeration, such as enumeration
of subgraphs that are trees. Their induced subgraph versions have not
been studied well. One of few example is for chordless paths and cycles.
Our motivation is to reduce the time complexity close to O(1) for each
solution. This type of optimal algorithms are proposed many subgraph
classes such as trees, and spanning trees. Induced subtrees are funda-
mental object thus it should be studied deeply and there possibly exist
some efficient algorithms. Our algorithm utilizes nice properties of k-
degeneracy to state an effective amortized analysis. As a result, the time
complexity is reduced to O(k) time per induced subtree. The problem is
solved in constant time for each in planar graphs, as a corollary.

1 Introduction

Subgraph enumeration problems are enumeration problems that given a graph
G and a graph class S, output all subgraphs S of G satisfying S € S without
duplicates. Subgraph enumeration problems are widely studied [ITH3L[6HI0]. Enu-
meration involves a huge number of solutions, thus enumeration algorithms are
supposed to run in short time, with respect to the number of solutions N. For
example, if an algorithm runs in O(N f) time for small f, other than prepro-
cessing, we can consider the algorithm is efficient. In this case, we say that the
algorithm runs in O(f) time per solution, or O(f) time for each solution. Fur-
ther, the maximum computation time between two consecutive outputs called
delay is also considered as a more efficiency of enumeration algorithms. Note
that delay will not be O(f) even if an algorithm runs in O(f) time per solution.

Enumeration algorithms are widely studied in these days. Especially, the
data mining area has a large amount of studies on pattern mining problem. The
algorithms have to deal with huge databases and a huge number of solutions,
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thus there are great needs of the algorithm theory on efficient enumeration. As we
show below, many recent studies focus on the development of small complexity
algorithms. Compared to other algorithms, enumeration algorithms have some
unique aspects. For example, by operating only on the differences between the
solutions, one can develop algorithms that run in time shorter than the amount
of exact output. Other than this, since the recursion is much more structured
compared to optimization, we can develop a non-trivial amortized analysis. As
a consequent, researches on the numeration algorithms have great interests.

In what follows, we fix the input graph G = (V, E), and let m = |E|, n = |V|.
In the 1970s, Tarjan and Read [§] studied a problem of enumerating spanning
trees in the input graph. Their algorithm runs in O(m+mn+mN) time. Shioura,
Tamura, and Uno [6] is improved the complexity to O(n+m+N) time. Tarjan [7]
proposed an algorithm for enumerating all cycle in O((|[V| + |E|)(|C(G)] + 1))
time, where C(G) is all cycle in G. Birmelé et al. [2] improved the complexity to
in O(m+3_.ccq lel) total time. They also presented an enumeration algorithm
for all st-paths in the input graph G in O(m+3_, cp () [7|) total time, where
Psi(G) is all st-paths in G. Ferreira et al. [3] proposed an enumeration algorithm
that enumerating all subtree having exactly k edges in G in O(kN) time. Wasa et
al. [I0] presented an improved version of Ferreira et al.’s problem in constant time
delay when the input is a tree. As we see, speed up of enumeration algorithms
have been intensively studied in long history.

Compared to these studies, induced subgraph enumerations have not been
studied well. Avis and Fukuda [I] considered the connected induced subgraph
enumeration problem. Their algorithm is based on reverse search, and runs in
O(mnN) time. Uno [9] proposed an enumeration algorithm for enumerating all
chordless path connecting the given vertices s and ¢ and all chordless cycle in
O((m 4+ n)N) time.

In this paper, we address the problem of enumerating all induced subtrees
in the given graph, where an induced subtree is a connected induced subgraph
that has no cycle. Assume that the set of vertices in an induced subtree is S.
Then, V'\ S is a feedback vertex set of G. Feedback vertices are also fundamental
graph objects and their enumeration problem is equivalent to that of induced
subtrees. If the input graph G is a tree, the connected induced subgraph of G
is a subtree. Thus, Wasa et al.’s shows that the induced subtree enumeration
problem can be solved in constant time delay when the input graph is a tree.
Tree is a simple graph class, so we are motivated whether we can do better in
more general graph classes with non-trivial algorithms.

As a main result of this paper, we propose an algorithm for the k-degenerate
graph case. The algorithm runs in O(k) time per solution, after (|V] + |E|)
preprocessing time. The algorithm starts from the empty subgraph, and adds a
vertex recursively to enlarge the induced subtree. The vertex to be added has
to be adjacent to the current induced subtree, and has not to make a cycle.
By using the degeneracy, we efficiently maintain the addible vertices, and the
time complexity is bounded by a sophisticated amortized analysis. Real world
graphs usually have small degeneracies, or only few vertex removals result small



degeneracies, the algorithm is expected to be efficient in practice. Compared to
other graph classes, this is a strong point of k-degenerate graphs. There have been
not so many studies on the use of the degeneracy for enumeration algorithm, and
thus our approach introduces one of new way of developing practically efficient
and theoretically supported algorithms.

The rest of this paper is organized as follows: In Section 2] we gives definitions
in this paper and the definition of our problem. In Section Bl we propose a
basic enumeration algorithm based on a binary partition method. In Section [4]
we improve the algorithm by using a property of the degeneracy, and analyze
its time complexity. Finally, we conclude this paper and give future works in
Section

2 Preliminaries

2.1 Graphs

Let G = (V, E) be an undirected graph, where V is the set of vertices and E C V2
is the set of edges. In this paper, we assume that G is simple and finite. We denote
by (u,v) the edge connecting u and v. For any vertices w,v of V, we say that
u and v are adjacent to each other if (u,v) € E. We denote by Ng(u) the set
of all vertices adjacent to u in G. We define the degree dg(u) of v in V as the
number of vertices adjacent to u. In what follows, if it is clear from context, we
omit the subscript G.

A path in G is a sequence of distinct vertices m(u,v) = (v1 = u,...,v; = v),
such that v; and v;41 are adjacent to each other for 1 <4 < j. If there is m(u,v)
in G, we say that the path connects v and v. The length of path 7(u,v) is the
number of vertices in 7(u,v) minus one. For any path 7(u,v) of length larger
than one, 7(u,v) is called a cycle if u = v. We say that G is connected if there
is a path connecting any pair of vertices in G. G is a tree if G has no cycle and
is connected.

2.2 Induced subtrees

Let S be a subset of V. We denote by G[S] = (S, E[S]) the graph induced by S,
where E[S] = {(u,v) € E | u,v € S}. We call G[S] an induced subgraph of G.
If no confusion, we regard S as G[S]. |S| is the size of S. We say that S is an
induced subtree (see Fig.[), if S is a tree. In the following, we state the problem
of this paper.

Problem (Induced subtree enumeration problem). Enumerate all induced subtrees
in G=(V,E).



Fig. 1. An induced subtree S1 in G;. In the figure, bolded vertices and edges represent
vertices and edges in Si1. S1 consists of {2,3,5,6,7}. S1 is an induced subtree in G
since S; is connected and acyclic.

2.3 K-degenerate graphs

A graph G is k-degenerate [4] if any its induced subgraph of G has a vertex
whose degree is less than or equal to k. The degeneracy of G is defined as the
smallest k satisfying the definition of k-degenerate graphs. Examples of graph
classes with constant degeneracy include trees, grid graphs, outerplanar graphs,
and planer graphs, thus degenerate graph is a large class of sparse graphs. These
degeneracy are 1, 2, 2, and 5, respectively.

From the definition of k-degeneracy, we obtain a vertex sequence (u, ..., uy|)
satisfying the condition

VI<i<|V], Hu; € N(ui) [0 <j <[V[}[ < koo (%).

This condition (*) implies that there exists an ordering among vertices of G such
that for any vertex u, the number of vertices adjacent to w larger than it is at
most k. Hereafter we assume that the vertices are indexed in this ordering. We
say v < v (u > v, respectively) if the index of w is smaller than v (u is larger
than v, respectively) with respect to this ordering. In Fig.[2] we show an example
of the ordering satisfying (x). Matula and Beck [5] proposed an algorithm for
obtaining the degeneracy of G and the ordering satisfying (x). By iteratively
choosing the smallest degree vertex and removing it from G, their algorithm
finds such an ordering in O(|V| + | E|) time.

3 Basic Binary Partition Algorithm

3.1 Candidate Sets and Forbidden Sets

Let S be an induced subtree of G. We define the adjacency of a vertex u € V
to S as adj(S,u) = |S N N(u)|, that is, adj(S,u) is the number of vertices of S
adjacent to u.

Lemma 1. Let S be any induced subtree in G and u be any vertex V\S. SU{u}
is an induced subtree if and only if adj(S,u) = 1.



Fig. 2. An example of an ordering of G1 = (V4, E1). In the right graph, vertices are
sorted by the ordering that satisfies (x).

Proof. Tf adj(S,u) > 1, u is adjacent to two vertices v and w of S. Since S has
a path 7 connecting v and w, the addition of u yields a cycle in S U {u}. If
adj(S,u) = 0, S U {u} is disconnected. If adj(S,u) = 1, S U {u} is connected.
Since the degree of u in G[S U {u}] is one, u is not included in a cycle. Thus,
G[S U {u}] does not contain a cycle. O

In each iteration, we maintain the forbidden set X as the vertex set such that
any vertex u in X satisfies either u belongs to S, SU{u} includes a cycle, or u is
forbidden to include in the solution by some ancestor iterations of the iteration.
We also maintain the candidate set CAND as the set of vertices whose additions
yield induced subtrees and are not included in X. We maintain CAND and X
for efficient computation. From Lemma [I] they are disjoint, and for any vertex
u, if adj(S,u) > 0, u belongs to either CAND or X.

3.2 Basic Binary Partition

Our algorithm starts from the empty induced subtree S = ). In each iteration
given an induced subtree S, we remove a vertex u from CAND, and partition
the problem into two; enumeration of all induced subtrees including S U {u},
and those including S but not including u. We recursively do this partition until
there is no vertex in CAND. The former can be solved by a recursive call with
setting S to S U {u}. The latter is solved by a recursive call with setting X to
X U {u}. In this way, we can enumerate all induced subtrees. We present the
main routine ISE of our algorithm in Algorithm Il We show how to update
candidate sets and forbidden sets in the next two lemmas.

Lemma 2. For an induced subtree S and a vertex u € CAND, when we add u
to S and remove u from CAND, CAND changes to

(CAND \ N(u)) U (N(u) \ (CAND U X))).

Proof. Any vertex in CAND other than N(u) remains in CAND after the addi-
tion of u to S since the adjacencies of the vertices do not change. If vertices in
N(u) N (CAND U X) are added to S U {u}, they are in S, or they make cycles



Algorithm 1 Main routine ISE: Enumerating all induced subtrees in G

1: procedure ISE(G = (V, E), S, CAND, X)

2: if CAND = () then output S; return;
choose the smallest vertex u from CAND and remove u from CAND;
call ISE(G, S, CAND, X U{u});
call ISE(G, SU{u}, (CAND\N (uv))U(N(u)\CAND), XU{u}U(CANDNN (u)));

since they are adjacent to u and other vertices in .S. The adjacency of any vertex
in N(u) \ (CAND U X) is zero for S, and one for S U {u}. Any vertex v ¢ S
satisfying adj(S U {u},v) =1 is either in N(u) or CAND. Thus, the statement
holds. O

Lemma 3. For an induced subtree S and a vertex u € CAND, when we add u
to S and remove u from CAND, X changes to

X U {u} U (CAND N N(u)).

Proof. Any vertex v € X remains in X for S U {u}, since adj(S U {u},v) >
adj(S,v) always holds. From the definition of the forbidden set, u is in X for
S U {u}. Further, any vertex v in CAND N N(u) makes cycles when they are
added to S U {u}, since adj(S U {u},v) > 2 holds. By adding u to S, no other
vertex is forbidden to be added, thus the statement holds. O

Theorem 1. Algorithm ISE enumerates all induced subtrees in the input graph
G = (V, E) without duplicates.

4 Improved Binary Partition Algorithm

From Lemma 2] and Lemma [3] we can easily see that the computation time of
updating the candidate set and the forbidden set is O(dg(u)) by checking all
vertices adjacent to u. However, in this way, we must check some vertices again
and again. Specifically, let us assume u,v are consecutively added to S, and
w ¢ S is adjacent to u, v and another vertex in S. When we add u to S, we
check whether we can add w to the candidate set of S U {u}. After generating
S U {u}, we check w again when we add v to S U {u}. In order to avoid this
redundant checking, we improve the way of updating the candidate set and the
forbidden set by using the following set.

Definition 1. Suppose that u is a vertex of CAND for an induced subtree of G.
We define a set I'(u, X) as follows:

I'u,X)={veN(u)|v¢X,v<u}.



Lemma 4. Let S be an induced subtree of G, u be the smallest in the candidate
set CAND of S, and X be the forbidden set of S. Then, the following formula
holds:

N(u)\ (CANDU X) = (N'(u) \ (CAND U X)) U I'(u, X),

where N'(u) = {v e N(u) | u < v}.

Proof. Let Z be the set of vertices larger than u. Since w is the smallest vertex in
CAND, (N(u)\(CANDUX))NZ = (N'(u)\ (CANDUX)). From the definition
of I'(u, X) and w is the smallest in CAND, (N(u)\ (CANDUX))N(V\ Z) =
N"(u) \ (CAND U X) = (N"(u) \ CAND) N (N"(u) \ X) = I'(u, X), where
N"(u) ={v € N(u) | v < u}. This concludes the lemma. O

In what follows, we use an adjacency lists for the sets CAND, X, and I,
so that a removal and the recover of the removed element can be done in O(1)
time, and the merge of two sets can be done in linear time of their sizes.

Lemma 5. When we add a vertex u to X, the update of I'(v, X) for all vertices
v is done in O(k) time.

Proof. To update, it is suffice to remove u from I'(v, X) from all v > u. Thus,
it takes O(k) time. O

Lemma 6. Let S be an induced subtree of G, u be the smallest in the candidate
set CAND of S, and X be the forbidden set of S. When we add u to S and
remove u from CAND, the computation time of updating CAND and X are
O(k + |I'(u, X)|) and O(k) time, respectively.

Proof. Since u is the smallest vertex in CAND, |A| < k, where A = |CAND N
N (u)]. Since vertices in N (u) are sorted by the ordering, the computation time of
A is O(k). Thus, adding vertices in A and u to X and removing A from CAND
are done in O(k) time. From Lemma [ since |[{v € N(u) | u < v}| < k, the
computation time of adding these vertex to CAND is O(k + |I'(u, X)|). Hence,
the lemma holds. ad

In Fig. [3] we show the changes of between the candidate set of S and that
of SU{u} after adding u to S. We implement CAND and X by doubly linked
lists. Thanks to the doubly linked list, the cost for a deletion and a recover of a
vertex can be done in constant time.

Theorem 2. Let G = (V, E) be the input graph and k is the degeneracy of G.
Our algorithm enumerates all induced subtrees in G in O(k) time per solution
after O(|V|+|E|) preprocessing time without duplicates using O(|V|+|E|) space.

Proof. Since the update of CAND and X is correct, the correctness of the al-
gorithm is obvious. (I) We discuss the time complexity of the preprocessing.
First, our algorithm computes an ordering of vertices by Matula and Beck’s al-
gorithm [B] in O(|V] + |E|) time. Next, our algorithm sorts vertices belonging
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Fig. 3. This figure shows the changes between candidate set CAND by the addition
of u to S. S is an induced subtree and {u,v,...,z,w, z} is the candidate set of S. Let
assume that a < b < u < c and d < u. Since d does not belongs to I'(u, X), d is skipped
checking.

to each adjacency list by using a bucket sort. Thus, the preprocessing time is
o(V] +1E]).

(IT) We consider an iteration inputting S, X, and CAND, and assume that
CAND' is the candidate set for S U {u}. Line 2 and line ] run in O(1) time.
From Lemma [B] line [ needs O(k) time. From Lemma [0 since it is clear that
|I"(u, X)| < |CAND'|, our algorithm needs O(k +|CAND'|) time for computing
CAND' and X. The update of I'’s is done in O(k|CAND N N(u)|) time, from
Lemma Bl We observe that for each vertex w such that v € (N(u) N CAND) is
removed from I'(w, X), w is in CAND of S U {v}, that will be generated by a
descendant of this iteration. We charge the cost of constant time to remove v
from I'(w, X) to the induced subtree SU{v,w}. Then, we can see that SU{v, w}
is charged only from iterations inputting S, that divides the problem by u' such
that (u/,v) € E, that is, the iteration generates SU{u'}. We consider the average
amount of the charge over all induced subtrees of S U {v,w}, v € CAND, and
w is in CAND of S U {v}. Since the number of pairs {u,v} C CAND is at most
E|CAND|, we can see the average charge is O(k) for each S U {v,w}. Thus,
in summary, we can see the update time for I in an iteration is bounded by
O(k), on average. Thus, an iteration takes O(k + k|CAND'|) time on average.
We observe that the sum of [CAND’| over all iterations is no greater than the
sum of | CAND| over all induced subtrees, since CAND’ is the candidate set of
SU{u} and forbidden set X U{u}, and SU{u} is generated only from S. Further,
we can see that SU{u} is generated only from S this iteration. Hence, thus the
sum of | CAND| over all induced subtrees is bounded by the number of induced
subtrees. Therefore, the computation time for each iteration is bounded by O(k)
on average.

In a binary partition algorithm, each iteration at the leaf of the recursion
outputs a solution, and each non-leaf iteration generates exactly two recursive
calls. Thus, the number of iterations (recursive calls) of a binary partition algo-
rithm is at most 2N. Hence, the computation time per induced subtree is O(k).
All all sets the algorithm maintains are of size O(|V| + |E|) in total.



We need a bit care to perform a recursive call. When a recursive call is made,
we record the operations to prepare the parameters given to the recursive call on
the memory. When the recursive call ends, we apply the inverse operations of the
recorded operations to recover the variables such as CAND and X. In this way,
we can recover the variables from the updated ones without increasing the time
complexity. Since no vertex is added or deleted from the same variable twice,
the accumulated space for the recorded operations is bounded by O(|V| + | E}).
From the above arguments, our algorithm runs in O(k) time per solution after
O(|V| + | E|) preprocessing time using O(|V| + |E|) space. 0

5 Conclusion

In this paper, we have presented an algorithm for enumerating all induced sub-
trees in k-degenerate graph. Our algorithm runs in O(k) time per solution after
linear preprocessing time using linear space. From this result, we obtain the fol-
lowing corollary; if the input graph has a constant degeneracy, our algorithm
is optimal with respect to the computation time per solution. K-degenerate
graphs often appear in real-world data even when with much noise. Thus con-
sidering the applications, it is important to study on efficient computation on
k-degeneracy. This result is one of the first steps for such studies, and researches
on enumeration algorithms on k-degenerate graphs will be an important issue.
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