Skip to main content

Soft Sensing as Class-Imbalance Binary Classification – A Lattice Machine Approach

  • Conference paper
Ubiquitous Computing and Ambient Intelligence. Personalisation and User Adapted Services (UCAmI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8867))

Abstract

Soft sensing is a class of problems that aim to sense something of interest that cannot be measured directly through something else that can be measured directly. The problems are usually studied as separate topics in different fields, and there is little research studying these problems in a unified fashion. In this paper we argue that there are commonalities among these problems. They can all be formulated as class-imbalanced binary classification problems. We present an extension of Lattice Machine, which is binary classification and by focusing on characterising positive class to deal with class-imbalanced binary classification problems. We also present experimental results, where some public data sets from UCI data repository are turned into binary-class data and consequently they become class-imbalanced. These experiments show that the extended Lattice Machine outperforms the popular machine learning algorithms (SVM, NN, decision tree induction) when used as soft sensing engines, in terms of precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, T., Belhumeur, P.N.: Tom-vs-pete classifiers and identity-preserving alignment for face verification. In: BMVC, vol. 2, p. 7. Citeseer (2012)

    Google Scholar 

  2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Computing Surveys (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  3. Harding, G., Lanza, R.C., Myers, L.J., Young, P.A.: Substance detection systems. In: Substance Detection Systems, vol. 2092 (1994)

    Google Scholar 

  4. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter 6(1), 1–6 (2004)

    Article  Google Scholar 

  5. Zhou, Z.-H.: Cost-sensitive learning. In: Torra, V., Narakawa, Y., Yin, J., Long, J. (eds.) MDAI 2011. LNCS, vol. 6820, pp. 17–18. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 34(3), 334–352 (2004)

    Article  Google Scholar 

  7. Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak hypotheses and boosting for generic object detection and recognition. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 71–84. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  9. Vu, V.-T., Bremond, F., Thonnat, M.: Automatic video interpretation: A novel algorithm for temporal scenario recognition. IJCAI 3, 1295–1300 (2003)

    Google Scholar 

  10. Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: A survey. IEEE Transactions on Circuits and Systems for Video Technology 18(11), 1473–1488 (2008)

    Article  Google Scholar 

  11. Delac, K., Grgic, M.: A survey of biometric recognition methods. In: Proceedings of 46th International Symposium on Electronics in Marine, Elmar 2004, pp. 184–193. IEEE (2004)

    Google Scholar 

  12. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  13. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. arXiv preprint arXiv:1106.1813 (2011)

    Google Scholar 

  14. Liu, X.-Y., Wu, J., Zhou, Z.-H.: Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(2), 539–550 (2009)

    Article  Google Scholar 

  15. Sun, Y., Kamel, M.S., Wong, A.K., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition 40(12), 3358–3378 (2007)

    Article  MATH  Google Scholar 

  16. Wang, H., Dubitzky, W., Düntsch, I., Bell, D.: A lattice machine approach to automated casebase design: Marrying lazy and eager learning. IJCAI, 254–263 (1999)

    Google Scholar 

  17. Wang, H., Düntsch, I., Gediga, G., Skowron, A.: Hyperrelations in version space. In: Proceedings of the 2002 ACM Symposium on Applied Computing, pp. 514–518. ACM (2002)

    Google Scholar 

  18. Wang, H., Düntsch, I., Trindade, L.: Lattice machine classification based on contextual probability. Fundamenta Informaticae 127(1), 241–256 (2013)

    MATH  MathSciNet  Google Scholar 

  19. Blake, C., Merz, C.J.: Uci repository of machine learning databases. irvine, ca: University of california. Department of Information and Computer Science, vol. 55 (1998), http://www.ics.uci.edu/~mlearn/mlrepository.html

  20. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wan, H., Wang, H., Guo, G., Lin, S. (2014). Soft Sensing as Class-Imbalance Binary Classification – A Lattice Machine Approach. In: Hervás, R., Lee, S., Nugent, C., Bravo, J. (eds) Ubiquitous Computing and Ambient Intelligence. Personalisation and User Adapted Services. UCAmI 2014. Lecture Notes in Computer Science, vol 8867. Springer, Cham. https://doi.org/10.1007/978-3-319-13102-3_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13102-3_85

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13101-6

  • Online ISBN: 978-3-319-13102-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics