Abstract
Clustering is a fundamental property of complex networks and it is the mathematical expression of a ubiquitous phenomenon that arises in various types of self-organized networks such as biological networks, computer networks or social networks. In this paper, we consider what is called the global clustering coefficient of random graphs on the hyperbolic plane. This model of random graphs was proposed recently by Krioukov et al. [22] as a mathematical model of complex networks, implementing the assumption that hyperbolic geometry underlies the structure of these networks. We do a rigorous analysis of clustering and characterize the global clustering coefficient in terms of the parameters of the model. We show how the global clustering coefficient can be tuned by these parameters, giving an explicit formula.
Nikolaos Fountoulakis: This research has been supported by a Marie Curie Career Integration Grant PCIG09-GA2011-293619.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)
Balogh, J., Bollobás, B., Krivelevich, M., Müller, T., Walters, M.: Hamilton cycles in random geometric graphs. Ann. Appl. Probab. 21(3), 1053–1072 (2011)
Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)
Barrat, A., Weigt, M.: On the properties of small-world network models. European Physical Journal B 13(3), 547–560 (2000)
Bloznelis, M.: Degree and clustering coefficient in sparse random intersection graphs. Ann. Appl. Probab. 23(3), 1254–1289 (2013)
Bode, M., Fountoulakis, N., Müller, T.: On the component structure of random hyperbolic graphs. in preparation
Bollobás, B.: Random graphs. Cambridge University Press, xviii+498 pages (2001)
Bollobás, B., Riordan, O.: Mathematical results on scale-free random graphs. In: Bornholdt, S., Schuster, H.G. (eds). Handbook of Graphs and Networks: From the Genome to the Internet, pp. 1-34. Wiley-VCH, Berlin (2003)
Bollobás, B., Janson, S., Riordan, O.: Sparse random graphs with clustering. Random Structures Algorithms 38, 269–323 (2011)
Börner, K., Maru, J.T., Goldstone, R.L.: Colloquium Paper: Mapping Knowledge Domains: The simultaneous evolution of author and paper networks. Proc. Natl. Acad. Sci. USA 101, 5266–5273 (2004)
Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA 99, 15879–15882 (2002)
Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Annals of Combinatorics 6, 125–145 (2002)
Chung, F., Lu, L.: Complex Graphs and Networks. AMS, viii+264 pages (2006)
Coupechoux, E., Lelarge, M.: How clustering affects epidemics in random networks. In: Proceedings of the 5th International Conference on Network Games, Control and Optimization (NetGCooP 2011), Paris, France, pp. 1–7 (2011)
Dorogovtsev, S.N.: Lectures on Complex Networks. Oxford University Press, xi+134 pages (2010)
Eggemann, N., Noble, S.D.: The clustering coefficient of a scale-free random graph. Discrete Applied Mathematics 159(10), 953–965 (2011)
Fountoulakis, N.: On the evolution of random graphs on spaces of negative curvature. http://arxiv.org/abs/1205.2923 (preprint)
Gilbert, E.N.: Random plane networks. J. Soc. Indust. Appl. Math. 9, 533–543 (1961)
Gugelmann, L., Panagiotou, K., Peter, U.: Random Hyperbolic Graphs: Degree Sequence and Clustering. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 573–585. Springer, Heidelberg (2012)
Hafner, R.: The asymptotic distribution of random clumps. Computing 10, 335–351 (1972)
Janson, S., Łuczak, T., Ruciński, A.: Random graphs. Wiley-Interscience, xii+333 pages (2001)
Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic Geometry of Complex Networks. Phys. Rev. E 82, 036106 (2010)
Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(1), 95–116 (1949)
McDiarmid, C., Müller, T.: On the chromatic number of random geometric graphs. Combinatorica 31(4), 423–488 (2011)
Menczer, F.: Growing and navigating the small world Web by local content. Proc.Natl. Acad. Sci. USA 99, 14014–14019 (2002)
Müller, T.: Personal communication
Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)
Park, J., Newman, M.E.J.: Statistical mechanics of networks. Phys. Rev. E 70, 066117 (2004)
Penrose, M.: Random Geometric Graphs. Oxford University Press, xiv+330 pages (2003)
Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Candellero, E., Fountoulakis, N. (2014). Clustering and the Hyperbolic Geometry of Complex Networks. In: Bonato, A., Graham, F., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2014. Lecture Notes in Computer Science(), vol 8882. Springer, Cham. https://doi.org/10.1007/978-3-319-13123-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-13123-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13122-1
Online ISBN: 978-3-319-13123-8
eBook Packages: Computer ScienceComputer Science (R0)