Skip to main content

Intelligent Tracking Control System for Fast Image Scanning of Atomic Force Microscopes

  • Chapter
  • First Online:
Chaos Modeling and Control Systems Design

Part of the book series: Studies in Computational Intelligence ((SCI,volume 581))

Abstract

Atomic force microscope (AFM) is a type of scanning probe microscopy technique which is used to measure the characteristics of various specimens at an atomic level through surface imaging. In the imaging process of the AFM the sample is placed on a positioning unit termed as nanopositioner. The performance of the AFM for fast image scanning is limited to the one percent of the first resonance frequency of its positioning unit. Many imaging applications require a faster response and high quality imaging than what can be achieved using the currently available commercial AFMs. The need for high speed imaging is the reduction of the computational time to capture an image. The time require to capture an image of a reference grating sample for an 8 μm × 8 μm area and 256 number of scan lines at the scanning rate of 1 Hz and 125 Hz are 170s and 2 s. This shows the importance of the increase of scan frequency in terms of operation time. The tracking performance of the nanopositioner of the AFM for high speed imaging is limited due to the vibration of the nanopositioner, cross coupling effect between the axes of the nanopositioner and nonlinear effects in the form of hysteresis and creep. In this chapter we have proposed an intelligent multi-variable tracking controller to compensate the effect of vibration, cross coupling and nonlinearities in the form of hysteresis and creep in AFM for fast image scanning. Experimental results in time and frequency domain are presented to show the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adriaens, H., De Koning, W., Banning, R.: Modeling piezoelectric actuators. IEEE/ASME Trans. Mechatron 5(4), 331–341 (2000)

    Article  Google Scholar 

  2. Al Janaideh, M., Rakheja, S., Su, C.Y.: An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans. Mechatron. 16(4), 734–744 (2011)

    Article  Google Scholar 

  3. Amelio, S., Goldade, A.V., Rabe, U., Scherer, V., Bhushan, B.: Measurments of mechanical propoerties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy. Thin Solid Films 392, 75–84 (2001)

    Article  Google Scholar 

  4. Ando T, Uchihashi T, Kodera N, Yamamoto D, Taniguchi M, Miyagi A, Yamashita H.: High-speed Atomic Force Microscopy for Nano-visualization of Biomolecular Processes. Wiley-VCH Verlag GmbH & Co. KGaA. pp. 277–296 (2009)

    Google Scholar 

  5. Ang WT, Garmon F, Khosla P, Riviere C.: Modeling rate-dependent hysteresis in piezoelectric actuators. In: Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003 (IROS 2003), vol. 2, pp. 1975–1980 (2003)

    Google Scholar 

  6. Balas, M.J.: Direct velocity feedback control of large space structures. J. Guidance Control 2(3), 252–253 (1979)

    Article  MathSciNet  Google Scholar 

  7. Barbara, P.F., Adams, D.M., O’Connor, D.B.: Characterization of organic thin film materials with near-field scanning optical microscopy. Annu. Rev. Mater. Sci. 29, 433–469 (1999)

    Article  Google Scholar 

  8. Betzig, E., Finn, P.L., Weiner, J.S.: Combined shear force and near-field scanning optical microscopy. Appl. Phys. Lett. 60(20), 2484–2486 (1992)

    Article  Google Scholar 

  9. Bhikkaji B, Yong YK, Mahmood IA, Moheimani SR.: Multivariable Control Designs for Piezoelectric Tubes. In: Proceedings of the 18th IFAC World Congress. August 28–September 2, vol. 18. Milano, Italy (2011)

    Google Scholar 

  10. Bhikkaji, B., Moheimani, S.O.: Integral Resonant Control of a Piezoelectric Tube Actuator for Fast Nanoscale Positioning. IEEE/ASME Trans. Mech. 13(5), 530–537 (2008)

    Article  Google Scholar 

  11. Bhikkaji, B., Ratnam, M., Fleming, A.J., Moheimani, S.O.R.: High-Performance Control of Piezoelectric Tube Scanners. IEEE Trans. Control Sys. Tech. 15(5), 853–866 (2007)

    Article  Google Scholar 

  12. Binnig, G., Rohrer, H.: American Physical Society; Scanning tunneling microscopy from birth to adolescence. Rev. Mod. Phys. 59, 615–625 (1987)

    Article  Google Scholar 

  13. Binnig, G., Smith, D.P.E.: Single-tube three-dimensional scanner for scanning tunneling microscopy. Rev. Sci. Instrum. 57(8), 1688–1689 (1986)

    Article  Google Scholar 

  14. Binnig, G., Quate, C.F., Gerber, C.: American Physical Society; Atomic Force Microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  15. Binnig, G., Quate, C.F., Gerber, C.: American Physical Society; Atomic Force Microscope 2D and 3D. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  16. Croft D, Shedd G, Devasia S.: Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. In: Proceedings of American Control Conference, pp. 2123–2128 (2000)

    Google Scholar 

  17. Das SK, Pota HR, Petersen IR. Damping controller design for nanopositioners: a mixed passivity, negative-imaginary and small-gain approach. IEEE/ASME Trans. Mechatronics (2014, In Press)

    Google Scholar 

  18. Das SK, Pota HR, Petersen IR.: Multi-variable Double Resonant Controller for Fast Image Scanning of Atomic Force Microscope, Asian Control Conference, Washington, 23–26 June 2013, pp. 1–6. Istanbul (2013b)

    Google Scholar 

  19. Das SK, Pota HR, Petersen IR.: Multi-variable Resonant Controller for Fast Atomic Force Microscopy. In: Proceedings of Australian Control Conference. pp. 448–453. Sydney, Australia (2012b)

    Google Scholar 

  20. Das SK, Pota HR, Petersen IR.: Resonant control of atomic force microscope scanner: A “mixed” negative-imaginary and small-gain approach. In: American Control Conference, Washington, June 17–19, 2013, pp. 5476–5481. Washington DC, USA (2013a)

    Google Scholar 

  21. Das SK, Pota HR, Petersen IR.: Resonant controller design for a piezoelectric tube scanner: a mixed negative-imaginary and small-gain approach. IEEE Trans. Control Syst. Technol. (2013c, In Press)

    Google Scholar 

  22. Das SK, Pota HR, Petersen IR.: Resonant Controller for Fast Atomic Force Microscopy. In: Proceedings of Conference on Decision and Control. pp. 2471–2476. Maui, Hawaii (2012a)

    Google Scholar 

  23. Devasia, S., Eleftheriou, E., Moheimani, S.: A Survey of Control Issues in Nanopositioning. IEEE Trans. Control Sys. Tech. 15(5), 802–823 (2007)

    Article  Google Scholar 

  24. DeVecchio, D., Bhushan, B.: Use of a nanoscale Kelvin probe for detecting wear precursors. Rev. Sci. Instrum. 69(10), 3618–3624 (1998)

    Article  Google Scholar 

  25. El Rifai OM, Youcef-Toumi K.: Coupling in piezoelectric tube scanners used in scanning probe microscopes. In: Proceedings of American Control Conference the 2001, vol. 4, pp. 3251–3255 (2001)

    Google Scholar 

  26. Fleming, A.J.: Nanopositioning system with force feedback for high-performance tracking and vibration control. IEEE/ASME Trans. Mechatron. 15(3), 433–447 (2010)

    Article  MathSciNet  Google Scholar 

  27. Fleming AJ, Leang KK.: Evaluation of charge drives for scanning probe microscope positioning stages. In: Proceedings of American Control Conference, pp. 2028–2033 (2008)

    Google Scholar 

  28. Fleming, A.J., Moheimani, S.O.R.: Precision current and charge amplifiers for driving highly capacitive piezoelectric loads. Electron. Lett. 39(3), 282–284 (2003)

    Article  Google Scholar 

  29. Fleming, A.J., Aphale, S.S., Moheimani, S.O.R.: A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages. IEEE Trans. Nanotechnology 9(4), 438–448 (2010)

    Article  Google Scholar 

  30. Hansma, P., Drake, B., Marti, O., Gould, S., Prater, C.: The scanning ion-conductance microscope. Science 243(4891), 641–643 (1989)

    Article  Google Scholar 

  31. Hartmann, U.: Magnetic force microscopy. Annu. Rev. Mater. Sci. 29, 53–87 (1999)

    Article  Google Scholar 

  32. Hung, S.K.: Spiral Scanning Method for Atomic Force Microscopy. J. Nanosci. Nanotechnol. 10, 4511–4516 (2010)

    Article  Google Scholar 

  33. Husser, O.E., Craston, D.H., Bard, A.J.: Scanning eletromechanical microscopy-high resolution deposition and etching materials. J. Electrochem. Soc. 136, 3222–3229 (1989)

    Article  Google Scholar 

  34. Ikhouane, F., Manosa, V., Rodellar, J.: Dynamic properties of the hysteretic Bouc-Wen model. Syst. Control Lett. 56(3), 197–205 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kuhnen, K., Krejci, P.: Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems—a new Preisach modeling approach. IEEE Trans. Autom. Control 54(3), 537–550 (2009)

    Article  MathSciNet  Google Scholar 

  36. Leang, K.K., Devasia, S.: Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators. IEEE Trans. Control Syst. Technol. 15(5), 927–935 (2007)

    Article  Google Scholar 

  37. Lee, D.T., Pelz, J.P., Bhushan, B.: Instrumentation for direct, low frequency scanning capacitance microscopy, and analysis of position dependent stray capacitance. Rev. Sci. Instrum. 73, 3523–3533 (2002)

    Google Scholar 

  38. Green M, Limebeer DJN.: Linear Robust Control. Prentice-Hall, NJ (1995)

    Google Scholar 

  39. Mahmood, I.A., Moheimani, S.O.R.: Making a commercial atomic force microscope more accurate and faster using positive position feedback control. Rev. of Sci. Instrum. 80(6), 063705(1)–063705(8) (2009)

    Article  Google Scholar 

  40. Majumdar, A.: Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999)

    Article  Google Scholar 

  41. Matey, J., Blanc, J.: Scanning capacitance microscopy. Annu. Rev. Mater. Sci. 57, 1437–1444 (1999)

    Google Scholar 

  42. McKelvey, T., Akay, H., Ljung, L.: Subspace-based identification of infinite-dimensional multivariable systems from frequency-response data. Automatica 32(6), 885–902 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  43. Melitz, W., Shen, J., Kummel, A.C., Lee, S.: Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66(1), 1–27 (2011)

    Article  Google Scholar 

  44. Patra, S., Lanzon, A.: Stability Analysis of Interconnected Systems With “Mixed” Negative-Imaginary and Small-Gain Properties. IEEE Trans. Autom. Control 56(6), 1395–1400 (2011)

    Article  MathSciNet  Google Scholar 

  45. Petersen IR.: Negative imaginary systems theory in the robust control of highly resonant flexible structures. In: Australian Control Conference. Melbourne, Australia. pp. 1–6 (2011)

    Google Scholar 

  46. Petersen, I., Lanzon, A.: Feedback Control of Negative-Imaginary Systems. IEEE Control Sys. Mag. 30(5), 54–72 (2010)

    Article  MathSciNet  Google Scholar 

  47. Pota H, Moheimani SR, Smith M.: Resonant controllers for flexible structures. In: Proceedings Conference of Decision and Control, vol. 1. pp. 631–636 (1999)

    Google Scholar 

  48. Pota, H., Reza Moheimani, S., Smith, M.: Resonant controller for smart structures. Smart Mater. Struct. 11, 1–8 (2002)

    Article  Google Scholar 

  49. Prater, C., Hansma, P., Tortonese, M., Quate, C.: Improved scanning ion-conductance microscope using microfabricated probes. Rev. Sci. Instrum. 62(11), 2634–2638 (1991)

    Article  Google Scholar 

  50. Ratnam M, Bhikkaji B, Fleming A, Moheimani S. PPF Control of a Piezoelectric Tube Scanner. In: 44th IEEE Conference on Decision and Control and European Control Conference, pp. 1168–1173 (2005)

    Google Scholar 

  51. Rost, M.J., vanBaarle, G.J.C., Katan, A.J., vanSpengen, W.M., Schakel, P., vanLoo, W.A., Oosterkamp, T.H., Frenken, J.W.M.: John Wiley and Sons Asia Pte Ltd; Video-rate scanning probe control challenges: setting the stage for a microscopy revolution. Asian J. Control 11(2), 110–129 (2009)

    Article  Google Scholar 

  52. Salapaka, S., Sebastian, A., Cleveland, J.P., Salapaka, M.V.: High bandwidth nano-positioner: A robust control approach. Rev. Sci. Instrum. 73(9), 3232–3241 (2002)

    Article  Google Scholar 

  53. Scherer, V., Arnold, W., Bhushan, B.: John Wiley & Sons, Ltd.; Lateral force microscopy using acoustic friction force microscopy. Surf. Interface Anal. 27(5–6), 578–587 (1999)

    Article  Google Scholar 

  54. Schitter G, Astrom KJ, DeMartini B, Fantner GE, Turner K, Thurner PJ, Hansma PK. Design and modeling of a high-speed scanner for atomic force microscopy. In: Proceedings of American Control Conference (2006)

    Google Scholar 

  55. Schitter G, Rost MJ. Scanning probe microscopy at video-rate. Mater. Today 11(0), 40–48 (2008)

    Google Scholar 

  56. Schitter G, Stemmer A, Allgower F. Robust 2 DOF-control of a piezoelectric tube scanner for high speed atomic force microscopy. In: Proceedings of American Control Conference the 2003, vol. 5, pp. 3720–3725 (2003)

    Google Scholar 

  57. Schitter, G., Menold, P., Knapp, H.F., Allgöwer, F., Stemmer, A.: High performance feedback for fast scanning atomic force microscopes. Rev. Sci. Instrum. 8, 72 (2001)

    Google Scholar 

  58. Schoenenberger, C., Alvarado, S.: Springer, Understanding magnetic force microscopy. Z. Phys. 80(3), 373–383 (1990)

    Article  Google Scholar 

  59. Sebastian A, Salapaka MV, Cleveland JP.: Robust control approach to atomic force microscopy. In: Proceedings of 42nd IEEE Conference on Decision and Control, vol. 4, pp. 3443–3444 (2003)

    Google Scholar 

  60. Sebastian, A., Salapaka, S.M.: Design methodologies for robust nano-positioning. IEEE Trans. on Control Sys. Tech. 13(6), 868–876 (2005)

    Article  Google Scholar 

  61. Stern, J.E., Terris, B., Mamin, H., Rugar, D.: Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl. Phys. Lett. 53(26), 2717–2719 (1988)

    Article  Google Scholar 

  62. Tuma, T., Lygeros, J., Kartik, V., Sebastian, A., Pantazi, A.: High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories. Nanotechnology 23(18), 185501 (2012)

    Article  Google Scholar 

  63. Williams, C., Wickramasinghe, H.: Scanning thermal profiler. Appl. Phys. Lett. 49(23), 1587–1589 (1986)

    Article  Google Scholar 

  64. Williams, C.C., Wickramasinghe, H.K.: Microscopy of chemical-potential variations on an atomic scale. Nature 344, 317–319 (1990)

    Article  Google Scholar 

  65. Yong YK, Moheimani SOR, Petersen IR. 2010. High-speed cycloid-scan atomic force microscopy. Nanotechnology 21(36)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Das, S.K., Pota, H.R., Petersen, I.R. (2015). Intelligent Tracking Control System for Fast Image Scanning of Atomic Force Microscopes. In: Azar, A., Vaidyanathan, S. (eds) Chaos Modeling and Control Systems Design. Studies in Computational Intelligence, vol 581. Springer, Cham. https://doi.org/10.1007/978-3-319-13132-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13132-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13131-3

  • Online ISBN: 978-3-319-13132-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics