Skip to main content

Application of Some Modern Techniques in Load Frequency Control in Power Systems

  • Chapter
  • First Online:
Chaos Modeling and Control Systems Design

Abstract

The main objective of Load Frequency Control (LFC) is to regulate the power output of the electric generator within an area in response to changes in system frequency and tie-line loading. Thus the LFC helps in maintaining the scheduled system frequency and tie-line power interchange with the other areas within the prescribed limits. Most LFCs are primarily composed of an integral controller. The integrator gain is set to a level that compromises between fast transient recovery and low overshoot in the dynamic response of the overall system. This type of controller is slow and does not allow the controller designer to take into account possible changes in operating conditions and non-linearities in the generator unit. Moreover, it lacks robustness. This chapter studies LFC in two areas power system using PID controller. In this chapter, PID parameters are tuned using different tuning techniques. The overshoots and settling times with the proposed controllers are better than the outputs of the conventional PID controllers. This chapter uses MATLAB/SIMULINK software. Simulations are done by using the same PID parameters for the two different areas because it gives a better performance for the system frequency response than the case of using two different sets of PID parameters for the two areas. The used methods in this chapter are: (a) Particle Swarm Optimization,(b) Adaptive Weight Particle Swarm Optimization, (c) Adaptive Acceleration Coefficients based PSO (AACPSO) and (d) Adaptive Neuro Fuzzy Inference System (ANFIS). The comparison has been carried out for these different controllers for two areas power system, the study presents advanced techniques for Load Frequency Control. These proposed techniques are based on Artificial Intelligence. It gives promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, S., Tarek, B. and Djemai, N.: Economic dispatch resolution using adaptive acceleration coefficients based PSO considering generator constraints. International Conference on Control, Decision and Information Technologies’, (CoDIT’13) 2013

    Google Scholar 

  2. Abd-Elazim, S. M., Ali, E.S.: Optimal PID tuning for load frequency control using bacteria foraging optimization algorithm.  International Middle East Power Systems Conference (MEPCON’10), pp. 410–415. Cairo University, Cairo, Egypt (2010)

    Google Scholar 

  3. Ali, M.M.I., Hassan, M.A.M.: Speed sensorless field–oriented control of a six-phase saturated model of induction motors drive with online stator resistance estimation using ANFIS. Int. J. Model. Ident. Control 17(4), 334–347 (2012)

    Article  Google Scholar 

  4. Amjady, N., Nasiri-Rad, H.: Nonconvex economic dispatch with AC constraints by a new real coded genetic algorithm. IEEE Trans. Power Syst. 24(3), 1489–1502 (2009)

    Article  Google Scholar 

  5. Ang, K.H., Chong, G.C.Y., Li, Y.P.I.D.: Control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005)

    Article  Google Scholar 

  6. Azar, A.T.: Fuzzy Systems. IN-TECH. Vienna, Austria, ISBN 978-953-7619-92-3 (2010)

    Google Scholar 

  7. Azar, A.T.: Adaptive neuro-fuzzy systems. In: Azar, A.T. (ed.), Fuzzy Systems. IN-TECH, Vienna, Austria, ISBN 978-953-7619-92-3 (2010)

    Google Scholar 

  8. Azar, A.T.: Overview of Type-2 fuzzy logic systems. Int. J. Fuzzy Syst. Appl. 2(4), 1–28 (2012)

    Article  MathSciNet  Google Scholar 

  9. Aziz, A., Hassan, M.A., El-Zahab, E.A.: An artificial intelligence based approach for high impedance faults analysis in distribution networks. Int. J. Syst. Dyn. Appl. 1(2), 44–59 (2012)

    Google Scholar 

  10. Aziz, M.A., Hassan, M.M., Zahab, E.A.: High-impedance faults analysis in distribution networks using an adaptive Neuro fuzzy inference system. Electr. Power Compon. Syst. 40(11), 1300–1318 (2012)

    Article  Google Scholar 

  11. Bevrani, H.: Robust power system frequency control. Springer Science and Business Media LLC, Brisbane (2009)

    Book  MATH  Google Scholar 

  12. Chaudhari, O.K., Khot, P.G., Deshmukh, K.C., Bawne, N.G.: Anfis based model in decision making to optimize the profit in farm cultivation. Int. J. Eng. Sci. 4(2), 442–448 (2012)

    Google Scholar 

  13. Gaing, Z.L.: A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Convers. 19(2), 384–391 (2004)

    Article  Google Scholar 

  14. Ghomsheh, V.S., Shoorehdeli, M.A., Teshnehlab M.: Training ANFIS structure with modified PSO algorithm in control and automation. In: Mediterranean Conference on IEEE MED’07, pp. 1–6 (2007)

    Google Scholar 

  15. Hamid, A., Abdul-Rahman, T.K.: Short term load forecasting using an artificial neural network trained by artificial immune system learning algorithm in computer modeling and simulation (UKSim). In: 12th International Conference on IEEE, pp. 408–413 (2010)

    Google Scholar 

  16. Ismail, A.: Improving UAE power systems control performance by using combined LFC and AVR. In: 7th UAE University Research Conference, Eng pp. 50–60 (2006)

    Google Scholar 

  17. Ismail, M.M., Hassan, M.A.: Using positive and negative sequence components of currents and voltages for high impedance fault analysis via ANFIS. Int. J. Syst. Dyn. Appl. 1(4), 132–157 (2012)

    Google Scholar 

  18. Ismail, M.M., Hassan, M.M.: Load frequency control adaptation using artificial intelligent techniques for one and two different areas power system. Int. J. Control Autom. Syst. 1(1), 12–23 (2012)

    Google Scholar 

  19. Kamel, T.S., Hassan, M.A.M., El–Morshedy, A.: Advanced distance protection technique based on multiple classified ANFIS considering different loading conditions for long transmission lines in EPS. Int J Model Ident. Control 16(2), pp. 108–121 (2012)

    Google Scholar 

  20. Kumar, D.V.: ‘Intelligent controllers for automatic generation control’, in TENCON’ 98. IEEE Region, 10th International Conference on Global Connectivity in Energy, Computer, Communication and Control, vol. 2, pp. 557–574 (1998)

    Google Scholar 

  21. Loganathan, C., Girija, K.V.: Hybrid learning for adaptive neuro fuzzy inference system. Int. J. Eng. Sci. 2(11), 6–13 (2013)

    Google Scholar 

  22. Lutfy, O.F., Noor, S.B.M., Marhaban, M.H.: A simplified adaptive neuro-fuzzy inference system (ANFIS) controller trained by genetic algorithm to control nonlinear multi-input multi-output systems. Sci. Res. Essays 6(31), 6475–6486 (2011)

    Google Scholar 

  23. Naik, R.S., ChandraSekhar, K., Vaisakh, K.: Adaptive PSO based optimal fuzzy controller design for AGC equipped with SMES and SPSS. J. Theor. Appl. Inf. Technol. 7(1), 008–017 (2005)

    Google Scholar 

  24. Panigrahi, B.K., Pandi, V.R., Das, S.: Adaptive particle swarm optimization approach for static and dynamic economic load dispatch. Energy Convers. Manag. 49(6), 1407–1415 (2008)

    Article  Google Scholar 

  25. RamaSudha, K., Vakula, V.S., Shanthi, R.V.: PSO based design of robust controller for two area load frequency control with nonlinearities. Int. J. Eng. Sci. 2(5), 1311–1324 (2010)

    Google Scholar 

  26. Rania, H. M.: Development of advanced controllers using adaptive weighted PSO algorithm with applications. M.Sc. thesis, Faculty of Engineering, Cairo University, Cairo (2012)

    Google Scholar 

  27. Salami, A., Jadid, S., Ramezani, N.: The effect of load frequency controller on load pickup during restoration. In: IEEE International Power and Energy Conference, PECon’06, pp. 225–228 (2006)

    Google Scholar 

  28. Skogestad, S.: Simple analytic rules for model reduction and PID controller tuning. J. Proc. Control 13(4), 291–309 (2003)

    Article  MathSciNet  Google Scholar 

  29. Song, Y.H., Johns, A.T.: Applications of fuzzy logic in power systems. I. General introduction to fuzzy logic. Power Eng. J. 11(5), 219–222 (1997)

    Article  Google Scholar 

  30. Song, Y.H., Johns, A.T.: Application of fuzzy logic in power systems. II. Comparison and integration with expert systems, neural networks and genetic algorithms. Power Eng. J. 12(4), 185–190 (1998)

    Article  Google Scholar 

  31. Tammam, M.A., Aboelela, M.A.S., Moustafa, M.A., Seif, A.E.A.: Load frequency controller design for interconnected electric power system. In: 55th Annual Power Industry Division Symposium POWID, Austin (2012a)

    Google Scholar 

  32. Tammam, M.A., Aboelela, M.A.S., Moustafa, M.A., Seif, A.E.A.: Fuzzy like PID controller tuning by multi-objective genetic algorithm for load frequency control in nonlinear electric power systems. Int. J. Adv. Eng. Technol. 5(1), 572–583 (2012)

    Google Scholar 

  33. Tammam, M.A.: Multi objective genetic algorithm controllers tuning for load frequency control in Electric power systems. M.Sc. thesis, Faculty of Engineering at Cairo University, Cairo (2011)

    Google Scholar 

  34. Vlachogiannis, J.G., Lee, K.Y.: Economic load dispatch—a comparative study on heuristic optimization techniques with an improved coordinated aggregation based PSO. IEEE Trans. Power Syst. 24(2), 991–1001 (2009)

    Article  Google Scholar 

  35. Wang, Y., Zhou, R., Wen, C.: Robust load-frequency controller design for power systems. In: IEE Proceedings C, Generation, Transmission and Distribution, IET Digital Library, vol. 140(1) pp. 11–16 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naglaa Kamel Bahgaat .

Editor information

Editors and Affiliations

Appendix

Appendix

Transmission line 1 parameters

Kg1 = 1

 

Kt1 = 1

 

Tg1 = 0.08

 

Tt1 = 20

 

R1 = 2.4

 

T11 = 20

 

Kl1 = 120

 

a12 = 1

 

Transmission line 2 parameters

Kg2 = 1

 

Kt2 = 1

 

Tg2 = 0.08

 

Tt2 = 0.33

 

R2 = 2.4

 

T12 = 20

 

Kl2 = 120

 

N = 25

Number of swarm beings

d = 6

Two dimensional problem

n = 500

Number of iterations

W0 = 0.15

Percentage of old velocity

A0 = 0.5

Acceleration factor constant between [0 1]

C1 = 2.05

Percentage towards personal optimum

C2 = 2.05

Percentage towards

x0range = [0 10]

Range of uniform initial distribution of positions

vstddev = 1

Std. deviation of initial velocities

C11 = 2

Percentage towards personal optimum used in ACC

C22 = 2.05

Percentage towards used in ACC

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bahgaat, N.K., Ahmed, M.I.ES., Hassan, M.A.M., Bendary, F.M. (2015). Application of Some Modern Techniques in Load Frequency Control in Power Systems. In: Azar, A., Vaidyanathan, S. (eds) Chaos Modeling and Control Systems Design. Studies in Computational Intelligence, vol 581. Springer, Cham. https://doi.org/10.1007/978-3-319-13132-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13132-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13131-3

  • Online ISBN: 978-3-319-13132-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics