Abstract
We present a preliminary study on the use of a Brain Computer Interface (BCI) device to investigate the feasibility of recognizing patterns of natural language morphemes from EEG signals. This study aims at analyzing EEG signals for the purpose of clustering natural language morphemes using the Artificial Bee Colony (ABC) algorithm. Using as input the features extracted from EEG signals during morphological priming tasks, our experimental results indicate that applying the ABC algorithm on EEG datasets to cluster Malay morphemes produces promising results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Badecker, W., Caramazza, A.: Morphology and aphasia. In: Spencer, A., Zwicky, A.M. (eds.) Handbook of Morphology, pp. 390–406. Blackwell, Oxford (1998)
Barber, H., DomÃnguez, A., de Vega, M.: Human brain potentials indicate morphological decomposition in visual word recognition. Neuroscience Letters 318(3), 149–152 (2002)
Cui, X., Potok, T.E.: Document Clustering Analysis Based on Hybrid PSO+K-means Algorithm. Journal of Computer Sciences (Special Issue), 27–33 (2005)
Davis, M.H.: Units of representation in visual word recognition. Proc. of the National Academy of Sciences of the United States of America 101(41), 14687–14688 (2004)
Devlin, J.T., Jamison, H.L., Matthews, P.M., Gonnerman, L.M.: Morphology and the internal structure of words. Proc. of the National Academy of Sciences of the United States of America 101(41), 14984–14988 (2004)
Diependaele, K., Sandra, D., Grainger, J.: Masked cross-modal morphological priming: Unravelling morpho-orthographic and morpho-semantic influences in early word recognition. Language and Cognitive Processes 20(1/2), 75–114 (2005)
Emotiv Systems. Emotiv EPOC, California, USA, http://www.emotiv.com/epoc.php (retrieved September 15, 2014)
Forster, K.I., Forster, J.C.: DMDX: A windows display program with millisecond accuracy. Behavior Research Methods Instruments and Computers 35(1), 116–124 (2003)
Karaboga, D., Akay, B.: A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation 214, 108–132 (2009)
Karaboga, D., Ozturk, C.: A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Applied Soft Computing 11, 652–657 (2011)
Kuncheva, L.I., Rodriguez, J.J.: Interval feature extraction for classification of event-related potentials (ERP) in EEG data analysis. Progress in AI 2(1), 65–72 (2013)
Morris, J., Stockall, L.: Early, equivalent ERP masked priming effects for regular and irregular morphology. Brain and Language 123(2), 81–93 (2012)
Mizooji, K.K., Haghighat, A.T., Forsati, R.: Data clustering using bee colony optimization. In: 7th International Multi-Conference on Computing in the Global IT, pp. 189–194 (2012)
Münte, T.F., Say, T., Clahsen, H., Schiltz, K., Kutas, M.: Decomposition of morphologically complex words in English: evidence from event-related brain potentials. Brain Research Cognitive Brain Research 7(3), 241–253 (1999)
Passino, K.M., Seeley, T.D., Visscher, P.K.: Swarm Cognition in honey bees. Behavioral Ecology and Sociobiology 62, 401–414 (2008)
Pham, D.T., Otri, S., Afify, A., Mahmuddin, M., Al-Jabbouli, H.: Data Clustering using the Bees Algorithm. In: Proc. of the 40th CIRP International Manufacturing Systems Seminar, Liverpool, UK, pp. 1–8 (2007)
Rakshit, P., Bhattacharyya, S., Khasnobish, A., Tibarewala, D.N., Janarthanan, R.: Artificial Bee Colony based feature selection for motor imagery EEG data. In: Bansal, J.C., Singh, P., Deep, K., Pant, M., Nagar, A. (eds.) Proc. of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). AISC, vol. 202, pp. 127–138. Springer, Heidelberg (2013)
Rodriguez-Fornells, A., Münte, T.F., Clahsen, H.: Morphological priming in Spanish verb forms: An ERP repetition priming study. Cognitive Neuroscience 14(3), 443–454 (2002)
Sanei, S., Chambers, J.A.: EEG signal processing. John Wiley & Sons, West Sussex (2013)
Schiezaro, M., Pedrini, H.: Data feature selection based on Artificial Bee Colony Algorithm. EURASIP Journal on Image and Video Processing (2013)
Schomer, D.L., da Silva, F.L.: Niedermeyer’s electroencephalography: Basic principles, clinical applications and related fields. Lippincot Williams and Wilkins, Philadephia (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Sulaiman, S. et al. (2015). Clustering Natural Language Morphemes from EEG Signals Using the Artificial Bee Colony Algorithm. In: Phon-Amnuaisuk, S., Au, T. (eds) Computational Intelligence in Information Systems. Advances in Intelligent Systems and Computing, vol 331. Springer, Cham. https://doi.org/10.1007/978-3-319-13153-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-13153-5_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13152-8
Online ISBN: 978-3-319-13153-5
eBook Packages: EngineeringEngineering (R0)