Abstract
We present a novel de-anonymization attack on mobility trace data and social data. First, we design an Unified Similarity (US) measurement, based on which we present a US based De-Anonymization (DA) framework which iteratively de-anonymizes data with an accuracy guarantee. Then, to de-anonymize data without the knowledge of the overlap size between the anonymized data and the auxiliary data, we generalize DA to an Adaptive De-Anonymization (ADA) framework. Finally, we examine DA/ADA on mobility traces and social data sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore Art Thou R3579X? Anonymized Social Networks, Hidden Patterns, and Structural Steganography. In: WWW 2007 (2007)
Narayanan, A., Shmatikov, V.: De-anonymizing Social Networks. In: S&P 2009 (2009)
Srivatsa, M., Hicks, M.: Deanonymizing Mobility Traces: Using Social Networks as a Side-Channel. In: CCS 2012 (2012)
Narayanan, A., Shmatikov, V.: Robust De-anonymization of Large Sparse Datasets (De-anonymizing the Netflix Prize Dataset). In: S&P 2008 (2008)
Goodin, D.: Poorly anonymized logs reveal NYC cab drivers detailed whereabouts, http://arstechnica.com/tech-policy/2014/06/poorly-anonymized-logs-reveal-nyc-cab-drivers-detailed-whereabouts/
Singh, K., Bhola, S., Lee, W.: xBook: Redesigning Privacy Control in Social Networking Platforms. In: USENIX 2009 (2009)
Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: “These Aren’t the Droids You’re Looking For”: Retrofitting Android to Protect Data from Imperious Applications. In: CCS 2011 (2011)
Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting Privacy Leaks in iOS Applications. In: NDSS 2011 (2011)
Opsahl, T., Agneessens, F., Skvoretz, J.: Node Centrality in Weighted Networks: Generalizing Degree and Shortest Paths. Social Networks 32, 245–251 (2010)
Gong, N.Z., Talwalkar, A., Mackey, L., Huang, L., Shin, E.C.R., Stefanov, E., Shi, E., Song, D.: Jointly Predicting Links and Inferring Attributes using a Social-Attribute Network (SAN). In: SNA-KDD 2012 (2012)
Bigwood, G., Rehunathan, D., Bateman, M., Henderson, T., Bhatti, S.: CRAWDAD data set st_andrews/sassy (v. 2011-06-03) (June 2011), Downloaded from http://crawdad.cs.dartmouth.edu/~crawdad/st_andrews/sassy/
Smallblue, http://domino.research.ibm.com/comm/research_projects.nsf/pages/smallblue.index.html
Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., Chaintreau, A.: CRAWDAD data set cambridge/haggle (v. 2009-05-29) (May 2009), Downloaded from http://crawdad.cs.dartmouth.edu/cambridge/haggle
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: Extraction and Mining of Academic Social Networks. In: KDD 2008 (2008)
Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the Evolution of User Interaction in Facebook. In: WOSN 2009 (2009)
Pham, H., Shahabi, C., Liu, Y.: EBM - An Entropy-Based Model to Infer Social Strength from Spatiotemporal Data. In: Sigmod 2013 (2013)
Ji, S., Li, W., Srivatsa, M., He, J., Beyah, R.: Technical Report: Data De-anonymization: From Mobility Traces to On-line Social Networks, http://users.ece.gatech.edu/~sji/Paper/isc14TechReport.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Ji, S., Li, W., Srivatsa, M., He, J.S., Beyah, R. (2014). Structure Based Data De-Anonymization of Social Networks and Mobility Traces. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds) Information Security. ISC 2014. Lecture Notes in Computer Science, vol 8783. Springer, Cham. https://doi.org/10.1007/978-3-319-13257-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-13257-0_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13256-3
Online ISBN: 978-3-319-13257-0
eBook Packages: Computer ScienceComputer Science (R0)