Skip to main content

Structure Based Data De-Anonymization of Social Networks and Mobility Traces

  • Conference paper
Information Security (ISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8783))

Included in the following conference series:

  • 1885 Accesses

Abstract

We present a novel de-anonymization attack on mobility trace data and social data. First, we design an Unified Similarity (US) measurement, based on which we present a US based De-Anonymization (DA) framework which iteratively de-anonymizes data with an accuracy guarantee. Then, to de-anonymize data without the knowledge of the overlap size between the anonymized data and the auxiliary data, we generalize DA to an Adaptive De-Anonymization (ADA) framework. Finally, we examine DA/ADA on mobility traces and social data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore Art Thou R3579X? Anonymized Social Networks, Hidden Patterns, and Structural Steganography. In: WWW 2007 (2007)

    Google Scholar 

  2. Narayanan, A., Shmatikov, V.: De-anonymizing Social Networks. In: S&P 2009 (2009)

    Google Scholar 

  3. Srivatsa, M., Hicks, M.: Deanonymizing Mobility Traces: Using Social Networks as a Side-Channel. In: CCS 2012 (2012)

    Google Scholar 

  4. Narayanan, A., Shmatikov, V.: Robust De-anonymization of Large Sparse Datasets (De-anonymizing the Netflix Prize Dataset). In: S&P 2008 (2008)

    Google Scholar 

  5. Goodin, D.: Poorly anonymized logs reveal NYC cab drivers detailed whereabouts, http://arstechnica.com/tech-policy/2014/06/poorly-anonymized-logs-reveal-nyc-cab-drivers-detailed-whereabouts/

  6. Singh, K., Bhola, S., Lee, W.: xBook: Redesigning Privacy Control in Social Networking Platforms. In: USENIX 2009 (2009)

    Google Scholar 

  7. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: “These Aren’t the Droids You’re Looking For”: Retrofitting Android to Protect Data from Imperious Applications. In: CCS 2011 (2011)

    Google Scholar 

  8. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting Privacy Leaks in iOS Applications. In: NDSS 2011 (2011)

    Google Scholar 

  9. Opsahl, T., Agneessens, F., Skvoretz, J.: Node Centrality in Weighted Networks: Generalizing Degree and Shortest Paths. Social Networks 32, 245–251 (2010)

    Article  Google Scholar 

  10. Gong, N.Z., Talwalkar, A., Mackey, L., Huang, L., Shin, E.C.R., Stefanov, E., Shi, E., Song, D.: Jointly Predicting Links and Inferring Attributes using a Social-Attribute Network (SAN). In: SNA-KDD 2012 (2012)

    Google Scholar 

  11. Bigwood, G., Rehunathan, D., Bateman, M., Henderson, T., Bhatti, S.: CRAWDAD data set st_andrews/sassy (v. 2011-06-03) (June 2011), Downloaded from http://crawdad.cs.dartmouth.edu/~crawdad/st_andrews/sassy/

  12. Smallblue, http://domino.research.ibm.com/comm/research_projects.nsf/pages/smallblue.index.html

  13. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., Chaintreau, A.: CRAWDAD data set cambridge/haggle (v. 2009-05-29) (May 2009), Downloaded from http://crawdad.cs.dartmouth.edu/cambridge/haggle

  14. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: Extraction and Mining of Academic Social Networks. In: KDD 2008 (2008)

    Google Scholar 

  15. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the Evolution of User Interaction in Facebook. In: WOSN 2009 (2009)

    Google Scholar 

  16. Pham, H., Shahabi, C., Liu, Y.: EBM - An Entropy-Based Model to Infer Social Strength from Spatiotemporal Data. In: Sigmod 2013 (2013)

    Google Scholar 

  17. Ji, S., Li, W., Srivatsa, M., He, J., Beyah, R.: Technical Report: Data De-anonymization: From Mobility Traces to On-line Social Networks, http://users.ece.gatech.edu/~sji/Paper/isc14TechReport.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ji, S., Li, W., Srivatsa, M., He, J.S., Beyah, R. (2014). Structure Based Data De-Anonymization of Social Networks and Mobility Traces. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds) Information Security. ISC 2014. Lecture Notes in Computer Science, vol 8783. Springer, Cham. https://doi.org/10.1007/978-3-319-13257-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13257-0_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13256-3

  • Online ISBN: 978-3-319-13257-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics