Skip to main content

Graded Encryption, or How to Play “Who Wants To Be A Millionaire?” Distributively

  • Conference paper
Information Security (ISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8783))

Included in the following conference series:

Abstract

We propose a new identity-based cryptographic primitive which we call graded encryption. In a graded encryption scheme, there is one central (mostly offline) authority and a number of sub-authorities holding master keys that correspond to different levels. As in identity-based encryption, a sender can encrypt a message using only the identity of the receiver (plus public parameters) but it may also specify a numerical grade i. Users may decrypt messages directed to their identity at grade i as long as they have executed a key-upgrade protocol with sub-authorities 1,…,i. We require a grade i ciphertext to be secure in a strong sense: as long as there is one sub-authority with index j ≤ i that is not corrupted, the plaintext should be hidden from any recipient that has not properly upgraded her identity.

Graded encryption is motivated by multi-stage games (e.g., “who wants to be a millionaire”) played in a distributed fashion. Players unlock ciphertexts that belong to a certain stage i only if they have met all challenges posed by sub-authorities {1,…,i }. This holds true even if players collaborate with some of the sub-authorities. We give an efficient construction that has secret key and ciphertext size of a constant number of group elements. We also demonstrate further applications of graded encryption such as proving that a certain path was followed in a graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ateniese, G., Hohenberger, S.: Proxy re-signatures: new definitions, algorithms, and applications. In: ACM Conference on Computer and Communications Security, pp. 310–319 (2005)

    Google Scholar 

  2. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure against adaptive chosen ciphertext attack. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Delerablée, C., Pointcheval, D.: Dynamic threshold public-key encryption. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 317–334. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

    Google Scholar 

  8. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Maurer, U.M., Massey, J.L.: Cascade ciphers: The importance of being first. J. Cryptology 6(1), 55–61 (1993)

    Article  MATH  Google Scholar 

  13. Merkle, R.C., Hellman, M.E.: On the security of multiple encryption. Commun. ACM 24(7), 465–467 (1981)

    Article  MathSciNet  Google Scholar 

  14. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  15. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kiayias, A., Osmanoglu, M., Tang, Q. (2014). Graded Encryption, or How to Play “Who Wants To Be A Millionaire?” Distributively. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds) Information Security. ISC 2014. Lecture Notes in Computer Science, vol 8783. Springer, Cham. https://doi.org/10.1007/978-3-319-13257-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13257-0_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13256-3

  • Online ISBN: 978-3-319-13257-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics